

IMPROVEMENT OF QUALITY MANAGEMENT FOR HIGHWAY AND BRIDGE CONSTRUCTION AND MAINTENANCE, PHASE II

MANUAL FOR LOAD RATING OF BRIDGES

2014

Department of Public Works and Highways Japan International Cooperation Agency

IMPROVEMENT OF QUALITY MANAGEMENT FOR HIGHWAY AND BRIDGE CONSTRUCTION AND MAINTENANCE, PHASE II

Manual for Load Rating of Bridges

3RD EDITION 2014

DEPARTMENT OF PUBLIC WORKS AND HIGHWAYS JAPAN INTERNATIONAL COOPERATION AGENCY

Republic of the Philippines DEPARTMENT OF PUBLIC WORKS AND HIGHWAYS OFFICE OF THE SECRETARY Manila

FOREWORD

Bridges along national roads support our country's sustainable economic growth by facilitating the transport of goods and services.

Nonetheless, there are still challenges in ensuring the structural integrity of national bridges. In coming face to face with these formidable tests, the Department of Public Works and Highways has developed supplementary plans to support the ingenious Bridge Management System in the form of this manual.

Truly, this Third Edition of the **Manual for Load Ratings of Bridges** is beneficial in ensuring public safety with its content on supplementary details and guidelines for our engineers in determining load capacity of existing bridges. In doing so, the procedure then helps identify those bridges needing urgent rehabilitation and/or replacement.

This Manual will also help enhance our technical staff's knowledge in computing bridges' load ratings that will eventually avert further deterioration due to overloading.

Our sincerest gratitude to JICA for their technical and funding assistance and the dedicated DPWH personnel who both worked hard in the realization of this Manual.

I enjoin all those concerned to use this as easy reference and proper guide in load ratings of bridges.

ROGELIO Ľ. SINGSON Secretary

ACKNOWLEDGMENT

The 3rd Edition of MLRB which incorporates the User's Manual of Computer-based Program on Load Rating is one of several manuals improved by the Japan International Cooperation Agency (JICA) with the Department of Public Works and Highways (DPWH) during the implementation of the Technical Cooperation Project for the Improvement of Quality Management for Highways and Bridge Construction and Maintenance, Phase II (2011-2014).

COMMITTEE MEMBERS – IMPROVEMENT OF MLRB

Mr. Hideo Nagao	-	Team Leader; Bridge Expert,
		Japan International Cooperation Agency
Ms. Judy F. Sese, PhD.	-	Project Manager and OIC-Director,
		Bureau of Research and Standards (BRS)
Ms. Carolina S. Canuel	-	Dep. Project Manager and Division Chief,
		Dev. Planning Div. (DPD), Planning Service
Mr. Adriano Doroy	-	TWG Member; Assistant Director, Bureau of Design
Ms. Edna F. Meñez	-	TWG Member; Div. Chief, Bureau of Maintenance
Mr. Aristarco M. Doroy	-	TWG Member; Div. Chief, Bureau of Construction
Mr. Felipe S. Ramos	-	TWG Member; Div. Chief, TSD, BRS
Mr. Rufino D. Valiente	-	CWG Member; Engr. IV, Bureau of Design
Mr. Bobby Z. Fodulla	-	CWG Member; Engr. III, BRS
Mr. Emmanuel A. Adrian	0-	CWG Member; Engr. III, DPD, Planning Service
Ms. Nelia I. Antonio	-	CWG Member; Div. Chief, Const. DIV. , CAR
Mr. Feliciano Espina	-	CWG Member; Engr. III, Negros Or. 1st DEO, RO VII
Ms. Rachel L. Lumapas	-	CWG Member; Engr. III, Const. Div., RO VII
Mr. Vicente R. Valle, Jr.	-	CWG Member; Engr. IV, MQCHD, RO VII
Mr. Alvin C. Cabueñas	-	CWG Member; Engr. III, MD, RO XI
Ms. Aurora M. Lacasand	ile -	CWG Member; Engr. III, MQCHD, RO VII
Mr. Rodrigo A. Yago	-	JICA Team, Asst. Engr. 1

ABBREVIATIONS

ASM	Allowable Stress Method
AASHTO	American Association of State Highways Transportation
Officials	
BIM	Bridge Inspection Manual
BMS	Bridge Management System
BOD	Bureau of Design
BRS	Bureau of Research and Standards
CBPLR	Computer-Based Program on Load Rating of Bridges
DEO	District Engineering Office
DPWH	Department of Public Works & Highways
GVW	Gross Vehicle Weight
JICA	Japan International Cooperation Agency
LFM	Load Factor Method
LRFM	Load and Resistant Factor Method
LR	Load Rating
MCEB	Manual for Condition Evaluation Bridges
MLRB	Manual for Load Rating of Bridges
PCBG	Prestressed Concrete Box Girder
PCDG	Prestressed Concrete Deck Girder
PCG	Prestressed Concrete Girder
PWRI	Public Works Research Institute
RA	Republic Act
RC	Reinforce Concrete
RCBG	Reinforce Concrete Box Girder
RCDG	Reinforce Concrete Deck Girder
RCFS	Reinforce Concrete Flat Slab
RCS	Reinforce Concrete Slab
RF	Rating Factor
RO	Regional Office
SIG (NCS)	Steel I-Girders with Non- Composite Concrete Slab
SIG (CCS)	Steel I-Girder with Composite Concrete Slab
SBG	Steel Box Girder
SDG	Steel Deck Girder
SDT	Steel Deck Truss
STT	Steel Through Truss

TABLE OF CONTENTS

Page

Foreword Acknowlec Abbreviatic Table of Cc	Igmen ons ontent	nt s	i II III IV
Chapter 1	INTRO		1
	1.1	Purpose of the Manual	1
	1.2	Scope of the Manual	1
	1.3	The DPWH BMS - Bridge Inspection Manual	2
	1.4	Load Carrying Capacity of Bridges	6
	1.5	Load Rating Considerations	8
	1.6	Load Rating Procedure	9
Chapter 2	ENG	INEERING AND IN-DEPTH INSPECTION FOR LOAD RATING	11
	2.1	Introduction	11
	2.2	Considerations for In-Depth Inspection	11
	2.3	Procedure for In-Depth Inspection	12
	2.4	Causes of Defects and Damages in Bridge Structures	14
	2.5	Visual Inspection	22
	2.6	Damage-Prone Members	23
	2.7	Damage Rating and Condition States	23
Chapter 3	LOAI	D RATING	25
	3.1	Load Rating Principles	25
	3.2	Load Rating Method	26
	3.3	Load Rating Levels	30
	3.4	Loadings	31
	3.5	Material Properties and Nominal Resistance or Capacity (R)	35
	3.6	Rating Bridge Decks	40
	3.7	Rating Reinforced Concrete Girder Bridges	41
	3.8	Rating Prestressed Concrete Girder Bridges	43
	3.9	Rating Steel Bridges	44
	3.10	Rating Truss Bridges	45
	3.11	Rating Bridges Without Plans	47
	3.12	Load Posting	48
	3.13	Reporting and Documentation	51

Page

Chapter 4	LOAD RATING EXAMPLES	57
	4.1 General	57
	4.2 Description	58
	4.2.1 Reinforced Concrete Flat Slab Bridge	58
	4.2.1.1 Simple	58
	4.2.1.2 Continuous	60
	4.2.2 Reinforced Concrete Deck Girder Bridge	62
	4.2.2.1 Simple	62
	4.2.2.2 Continuous	64
	4.2.3 Pre-stressed Concrete Deck Girder Bridge	66
	4.2.3.1 Simple	66
	4.2.3.2 Continuous	68
	4.2.4 Steel I - Girder Bridge	70
	4.2.4.1Simple	70
	4.2.4.2 Continuous	72
	4.2.5 Reinforced Concrete Deck Slab	74
Chapter 5		77
Chapter 5	5.1 Purpose of the Computer-based Program	,, 77
	5.2 Scope of the Computer based Program	, , 77
	5.2 Scope of the Computer based Program	78
	3.5 Thoceadie of the computer-based hogiani	70
Appendix I	Damage-Prone Members	81
	Bridge Inspection Points by Structure Type	83
	Bridge Inspection Points by Damage Type	99
	Lead Dating Eventrales	111
Appenaix II	Load Rating Examples	
	Example 1: Reinforced Concrete FLAT Slab Bridge	115
	Example 1-1: Simple	116
	Computer based calculation	116
	Manual calculation	127
	Example 1-2: Continuous	134
	Computer based calculation	134
	Manual calculation	145
	Example 2: Reinforced Concrete Deck Girder Bridge	155
	Example 2-1: Simple	156
	Computer based calculation	156
	Manual calculation	167
	Example 2-2: Continuous	176

Page

	Computer based calculation	176
	Manual calculation	187
	Example 3: Pre-stressed Concrete Deck Girder Bridge	199
	Example 3-1: Simple	200
	Computer based calculation	200
	Manual calculation	212
	Example 3-2: Continuous	222
	Computer based calculation	222
	Manual calculation	234
	Example 4: Steel I - Girder Bridge	249
	Example 4-1: Simple	250
	Computer based calculation	250
	Manual calculation	257
	Example 4-2: Continuous	264
	Computer based calculation	264
	Manual calculation	271
	Example 5: Reinforced Concrete Deck Slab	279
	Computer based calculation	280
	Manual calculation	286
Appendix III	Rating Calculation Aids	293
Appendix IV	Load Posting Sign	317
Appendix V	User's Manual – Load Rating Computer-Based Program	321
List of Tables		
Table 1.3-1	Bridge Inspection Types and Responsibility	3
Table 1.32	Bridge Attribute Condition States	4
Table 1.33	Bridge Load Rating Schedule	5
Table 2.4-1	Factors Causing Damages	15
Table 2.5-1	Items to be Observed in the Field	22
Table 2.5-2	Inspection and Examination Contents	23
Table 3.2-1	Failure Criteria for Structures	. 29
Table 3.4-1	Roadway Width and Number of Traffic Lanes	. 33
Table 3.5-1	Material Properties Used When Actual Grade of Material is Unknown	36
Table 3.12-1	Maximum Allowable Gross Vehicle Weight (GVW) as per RA No. 8794**	50
Table 3.12-2	Load Posting Vehicles	52

List of Figures

Figure 1.6-1	Flowchart of Load Rating Procedure	10
Figure 2.3-1	Flowchart of In-Depth Inspection Procedure for Load Rating	13
Figure 2.3-2	Damage Symbols	14
Figure 2.4-1	External Factors Causing Damages to Bridge	16
Figure 2.4-2	Damage by Fire	16
Figure 2.4-3	Drying Shrinkage	17
Figure 2.4-4	Temperature Change	17
Figure 2.4-5	Damage Due to Salt Penetration	18
Figure 2.4-6	Concrete pH and Corrosion Rate	18
Figure 2.4-7	Rebar Loss of Section	18
Figure 2.4-8	Concrete reaction to Acid Attack	19
Figure 2.4-9	Mechanism for Alkali-Silica Reactions	20
Figure 2.4-10	Process of Carbonation in Concrete	20
Figure 2.4-11	Honeycombs, Rocket Pockets and Air Voids	21
Figure 2.4-12	Concrete Segregation	21
Figure 3.2-1	Typical Shear and Flexure Failure Modes for Concrete Bridges	29
Figure 3.2-2	Typical Shear and Flexure Failure Modes for Steel Bridges	30
Figure 3.4-1	Rating Live Load	32
Figure 3.4-2	Typical Legal Loads Used for Load Posting	34
Figure 3.12-1	Flowchart of Load Posting Guideline	51
Figure 3.13-1	Sample Load Posting Sign	53
Figure 3.13-2	Load Rating Report and Documentation	54
Figure 3.13-3	Load Rating Summary Sheet	55
Figure 4.2-1	RCFS Simple Bridge (Example 1-1)	58
Figure 4.2-2	Load rating Summary Sheet for Example 1-1	59
Figure 4.2-3	RCFS Continuous Bridge (Example 1-2)	60
Figure 4.2-4	Load Rating Summary Sheet for Example 1-2	61
Figure 4.3-1	RCDG Bridge (Example 2-1)	62
Figure 4.3-2	Load Rating Summary Sheet for Example 2-1	63
Figure 4.3-3	RCDG Bridge (example 2-2)	64
Figure 4.3-4	Load Rating Summary Sheet for Example 2-2	65
Figure 4.4-1	PC Deck Girder Bridge (Example 3-1)	66
Figure 4.4-2	Load Rating Summary Sheet for Example 3-1	67
Figure 4.4-3	PC Deck Girder Bridge (Example 3-2)	68
Figure 4.4-4	Load Rating Summary Sheet for Example 3-2	69
Figure 4.5-1	Steel Girder Bridge (Example 4-1)	70
Figure 4.5-2	Load Rating Summary Sheet for Example 4-1	71
Figure 4.5-3	Steel Girder Bridge (Example 4-2)	72
Figure 4.5-4	Load Rating Summary Sheet for Example 4-2	73
Figure 4.6-1	RCDG Bridge (Example 5)	74
Figure 4.6-2	Load Rating Summary Sheet for Example 5	75
Figure 5.3-1	Damage Evaluation in this Program	79
Figure 5.3-2	Sample Procedure Sheet in the User's Manual	80

Chapter 1

INTRODUCTION

1.1 PURPOSE OF THE MANUAL

The purpose of the Manual for Load Rating of Bridges (MLRB) is to guide and provide the Department of Public Works and Highways (DPWH) and others with uniformity in the procedures and policies for determining the load capacity and load rating of existing bridges.

In any event, this Manual should not overrule sound engineering judgment.

1.2 SCOPE OF THE MANUAL

This Manual has been prepared to provide the DPWH with a load rating process consistent with the objectives of the DPWH Bridge Management System. The Manual is focused on load rating (or load capacity determination) procedures with a section on engineering and in-depth inspection of existing bridges. A section is devoted to provide examples in performing load rating calculations.

Chapter 1 provides the necessary background and information on load rating of bridges including rating considerations, procedures and methodology. In order to assess the existing capacity of bridge components or attributes, it is necessary to determine the existing condition of these members using more detailed inspection and condition evaluation. A discussion on engineering and in-depth inspection and condition evaluation of bridge components is presented in Chapter 2. Chapter 3 deals with the process and procedure of load rating including loadings used for load rating, rating guidelines, load posting and reporting. Computerbased Program on load rating is presented in Chapter 5.

The provisions of this Manual apply to all conventional concrete and steel highway bridge structures in accordance with the DPWH Design Guidelines and the AASHTO Standards. Special bridges and bridges other than highway bridges may need special provisions not covered in this Manual. General guidance is given in this Manual but more complex procedures must be used to determine actual load rating.

This Manual is prepared with reference to the following:

- <u>Bridge Management System Bridge Inspection Manual (Referred to as BMS-BIM)</u>, Department of Public Works and Highways, January 2004.
- <u>Bridge Inspection Manual</u> (Draft), (PWRI Text No. 2651) Public Works Research Institute, Ministry of Construction in Japan, July 1988. (Referred to as BIM-PWRI)
- <u>Manual for Condition Evaluation of Bridges, 2nd Ed. (Referred to as MCEB)</u>, American Association of State Highway and Transportation Officials, 2000.
- <u>Design Guidelines, Criteria and Standards</u> <u>Bridge Design</u>, DPWH & JICA, March 2004.
- <u>Standard Specifications for Highway Bridges, 17th Ed.</u>, AASHTO, 2002.
- <u>An Approach to Inspection and Condition Evaluation of Bridges (Referred to as AICEB)</u>, JICA, DPWH & KEI, November 2003.

- <u>Revision of Bridge Management System Bridge Inspection Manual</u> (<u>Referred to as Rev BMS-BIM</u>), Department of Public Works and Highways, December 2007.
- Bridge Engineering Inspection Manual, DPWH and JICA, 2014

For all matters not covered by this Manual, the current DPWH and AASHTO Specifications and Standards should be used as a guide. However, if bridge member behavior is not consistent with the controlling specifications, such deviations based on the known behavior of the member may be used but should be fully documented.

1.3 THE DPWH BMS - BRIDGE INSPECTION MANUAL

The Bridge Management System (BMS) was established by the DPWH to provide a computer based system for the management of Philippine national bridges. The function of the BMS is to provide the DPWH with a "comprehensive and sustainable bridge inspection program to provide sufficiently accurate, consistent and timely information to planners and maintenance personnel for all bridges which are part of the national road network, utilizing computer applications being procured by DPWH".

Under the BMS system, a *Bridge Inspection Manual* is prepared "to provide bridge inspectors and others with guidelines and procedures to undertake effective bridge inspections".

The Bridge Inspection Manual contains standardized bridge inspection procedures and requirements for all types of bridge inspections undertaken by the DPWH and is intended to be utilized as a training guide and reference manual for the DPWH bridge inspectors. This will ensure that consistent inspection reports are delivered from all bridge inspections.

The 2004 BMS-Bridge Inspection Manual was revised in 2007 reducing the inspection types from seven (7) to five (5) types to avoid overlapping activities and simplify the required actions. The 2007 Revised BMS-Bridge Inspection Manual which focuses on the detailed procedures for condition survey and rating, will provide a clear definition on how to assess bridge condition using a more specific defect measurement guidelines and a bridge condition rating card.

1.3.1 Bridge Inspection Types

The revised BMS - Bridge Inspection Manual (2007) focuses on five major Bridge Inspection Types to assess bridge conditions based on defects or damages, as listed in Table 1.3-1. The Inspection Types are categorized into:

- Scheduled Inspection required to be undertaken on a set of frequency to provide data for DPWH functions, and
- Non-scheduled Inspection undertaken only when required because of the addition of new bridges or due to calamities.

Bridge Inspection Types 1 is essentially a visual inspection, without requiring specialty in bridge engineering, to check for obvious defects and ensure that regular planned maintenance is being properly undertaken.

Bridge Inspection Type 2 or Condition Inspection will monitor and rate the condition of bridges that becomes a basis for identifying maintenance needs, forecasting future bridge intervention requirements and estimating funding requirements.

Bridge Inspection Type 3 or Engineering Inspection is undertaken as follow-up to bridge Condition Inspection when attribute defects are in condition state 2 or 3 in any primary component/attribute or in any secondary component that has a detrimental effect on the structural performance of the bridge. This will provide information for future design of the required major maintenance works.

Bridge Inspection Type 4 or Emergency Inspection is undertaken in response to calamities. This will confirm bridge safety following a calamity or determine the necessary work to ensure safety and restore the bridge function.

Bridge Inspection Type 5 or Inventory Bridge Inspection is an initial inspection performed to obtain inventory data on bridges.

TYPE	NAME	FREQUENCY	PURPOSE	RESPONSIBILITY		
SCHE	SCHEDULED BRIDGE INSPECTIONS					
1	Routine	Monthly	 Scheduling of routine maintenance, check on bridge condition to ensure the safety of bridges To detect defects of bridges at an early stage 	DEO		
2	Condition	Annual	 To obtain condition data on and major maintenance needs of the bridge for operation of the BMS To assess and rate condition of the structure 	DEO/RO		
NON	-SCHEDULED BR	RIDGE INSPECT	TIONS			
3	Engineering	As Required	 To investigate the major maintenance needs of defective bridge identified by a condition inspection or other inspection To evaluate the needs for improvement works To decide on appropriate countermeasure To determine the safe load capacity of the bridge To monitor progress of any damage To test and evaluate strength or quality of materials To evaluate structural strength and seismic vulnerability 	DEO / RO / BOD / BRS / BMS Team and other Entities		
4	Emergency	As Required	 To determine emergency work to bridges after occurrence of calamities, ensure safety of bridges To obtain damage information to evaluate necessity of urgent repairs To determine severity of structural damage to bridges To confirm safety of bridges and vehicular traffic To evaluate structural strength 	DEO/RO		
5	Inventory	As Required	 To obtain/update bridge inventory data for the RBIA and the BMS 	DEO/RO		

Table 1.3-1	Bridge	Inspection	Types and	Responsib	ility
	2				J

NOTES: RO - Regional Office BOD - Bureau of Design DEO - District Engineering Office

BRS - Bureau of Research and Standards

Although the above inspections can identify defects or damages with condition ratings for the bridge attributes, its primary objective is to prepare maintenance needs with corresponding estimated costs for funding requirements. Moreover, the manual does not provide a basis for determining the safe load capacity of the bridge and the need for load posting. In this regard, this Manual will supplement the BMS-BIM with a guide for load rating of existing bridges and recommends load posting when necessary.

1.3.2 Condition Rating of Bridge Attributes

The 2007 revised BMS - Bridge Inspection Manual enumerates and describes common material defects or damages of bridge components/attributes (referred to as members in this manual) with corresponding condition state criteria. Although the condition evaluation state of bridge components/elements depends on many factors, the bridge attributes condition states are developed using the evaluation rating, as presented in Table 1.3-2.

As seen in Table 1.3-2, the Condition States are rated from 0 to 3 with 0 being the good condition state of the attribute. Although maintenance actions are recommended for each condition state, load posting is not mentioned as an alternative option for the action.

It should be noted that bridges exhibiting progressive or advanced stage of deterioration or damage should be checked thoroughly as to the safe load capacity and load posted, if necessary.

CONDITION STATE	DESCRIPTION	ACTION
0 (Good)	Attribute is in good condition with little or no deterioration.	No action required
1 (Fair)	Attribute shows deterioration of a minor nature to the primary supporting material and is showing first signs of being affected.	Major maintenance is required within 10 years
2* (Poor)	Attribute shows advancing deterioration and loss of protection to the supporting material, minor loss of section	Major maintenance is required within 2 years
3* (Bad)	Attribute shows advanced deterioration, loss of effective section to the primary supporting material, and is acting differently to design or is showing signs of overstress	Immediate major maintenance is required

*When Condition State is 2 or 3, a follow-up inspection (Engineering Inspection) is conducted to provide more information on the degree of deterioration or damage which will be used to determine the necessary maintenance requirements or intervention. At this stage, the bridge stability may be affected so that determination of the safe load capacity of the bridge is needed. The vehicle live load that will be allowed to pass through the bridge may have to be limited when the load capacity is reduced from the original design live load. This Manual will provide the necessary guide in performing load capacity determination and load rating.

1.3.3 When to Perform Load Rating

The need to perform Load Rating calculations for the bridge is indicated in Table 1.3-3. As shown in Table 1.3-3, it is not necessary to perform Load Rating of bridges under Inspection Types 1 and 2. However, recommendations to perform load rating calculations can be specified at these inspection stages if certain bridge conditions require load capacity reevaluation.

The following condition requires load rating evaluation:

- When the structural configuration was changed from the one originally intended by design (e.g. changes in support conditions, changes in structural members, etc.),
- When the dead load condition was modified due to repair, rehabilitation, or other reasons,
- The when the bridge use or function is modified,
- When the overall condition of bridge is poor or bad, or
- When engineering judgment requires a need for safe load capacity reevaluation.

Since Engineering Inspection is performed when Overall Condition of bridge is poor or bad, it will be necessary to perform load rating to determine the safe load capacity of the bridge prior to maintenance or restoration works. This will ensure public safety and prevent loss of structure.

INSPECTION				
TYPE	NAME	LOAD RAIING	REIMARKS	
1	Routine		Load Rating calculation is not necessary since the objective is to identify maintenance needs. *Recommendation for the need for Load Rating is given at this stage.	
2	Condition	Not Performed		
3	Engineering	Performed when Overall Condition is poor or bad	Since Overall Condition is poor or bad which may affect bridge stability, the safe load capacity of the bridge should be verified.	
4	Emergency	Performed when Overall Condition is poor or bad	If the bridge Overall Condition is poor or bad after an emergency or a calamity, Load Rating should be performed.	
5	Inventory	Performed when Required by DPWH	This initial investigation may require verification of the safe load capacity of the bridge in order to determine its initial Load Rating.	

Table 1.3-3 Bridge Load Rating Schedule

Load Rating calculations shall be performed during an Emergency Inspection when the Condition State of any attribute is 2 or more.

For bridges designed prior to current design requirements, load rating evaluation is needed to check its safe load capacity. This is usually done during the Inventory Inspection to obtain or update bridge inventory data.

1.4 LOAD CARRYING CAPACITY OF BRIDGES

The load-carrying capacity is defined below, as stated in the "Maintenance and Management of Roadways and Bridges, AASHTO 1999".

Each bridge has an estimated capability to carry a certain total load limit. A bridge is designed for a specific load, and there is an estimated load at which the bridge is expected to fail (ultimate strength load). The ratio of the two loads is the factor of safety estimated to exist in the bridge.

Factor of Safety = (Estimated Failure Load) (Design Load)

The "capacity" of a bridge is the sum total of the various loads that a bridge can safely carry in its existing condition or state. The various loads on a bridge may include the following:

Dead Load:

This is defined as the load from the weight of the beams and deck and all of the structure above the piers and abutments upon which the vehicular and pedestrian traffic weight is supported. Some elements of the bridge included in the dead load are as follows:

- Wearing courses.
- Structural decks.
- Structural members.
- Curbs, sidewalks, railings, and fencing.
- Utility pipes, conduits, lighting masts, and traffic signal hardware.

The dead load may be significantly altered by the removal or addition of such elements during the bridge maintenance process, thereby reducing (or increasing) the bridge capacity to carry a specified live load. When considering the foundation support of the bridge, the piers (and the footings, if piers are supported by footing rather than piles) must be included in the dead load. That is, at whatever level within a bridge structure the capacity is estimated, all elements of the structure permanently in place are included in the dead load.

Live Load:

Live load includes the weight of vehicles, pedestrians, and other traffic. Highway loadings used in establishing load-carrying capacity will be the standard DPWH (or AASHTO) vehicle loadings or the DPWH legal loads.

□ Impact Load:

Impact Loads are dynamic loads resulting from vertical acceleration of vehicles. It is estimated as a percentage of the live load according to the approved bridge design and analysis process.

□ Wind Load:

Pressure on the beams, trusses, and other parts of the bridge exposed to steady or buffeting wind gusts. Sometimes this loading is significant for tall bridges and may require a detailed engineering analysis to determine its effect. The total effect of wind load depends upon the expected maximum wind velocity, the vertical area of all bridge members in the side profile, and the shape of the section (using drag coefficient).

Longitudinal Forces:

Through acceleration and braking, traffic moving across a bridge can generate forces parallel to the centerline or longitudinal axis of the bridge. Such forces are often estimated to be 5% of the estimated live load.

Thermal Forces:

Changes in temperatures create stresses and strains due to the thermal expansion and contraction of bridge materials.

Earth Pressures:

This includes soil pressure on abutments and other components of the bridge against which any significant depth of earth fill rests. Additional pressure can build up if weep holes (drainage openings) become clogged and do not drain the hydrostatic pressure.

Stream Forces:

Bridge piers must resist horizontal loads caused by water flowing around them. During flood flow, this pressure can significantly increase. Allowing debris to build up against a pier during flooding greatly increases this pressure.

Earthquake Forces:

Bridges in earthquake zones are subject to potential vibration loadings from any direction that the geologic earth crust plates may move during an earthquake tremor.

Bridge capacity defines the capability of the bridge to carry the load from the above various forces. However, in the load rating calculations to determine the safe live load capacity of bridges, it is not necessary to include all the above loadings which will be discussed in the next sections.

1.5 LOAD RATING CONSIDERATIONS

Bridge load rating provides a basis for determining the safe load capacity of the bridge. Such load rating requires engineering judgment in determining the rating value that will be used to assess the bridge soundness and safe use by establishing the safe load capacity of the members. Bridge load rating calculations will be based on the information of the most recent inspection indicating the present condition of the bridge, including changes in structural condition due to repairs and rehabilitation, dead load and member deterioration.

As part of every inspection cycle, bridge load ratings should be reviewed and updated to reflect any relevant changes in condition or dead load noted during the inspection.

The Manual will provide two load rating methods for the Operating and Inventory Levels: (1) the Allowable Stress Method which is especially useful for comparison with past practices, and (2) the Load Factor Method which is based on multiples of the actual load.

1.5.1 Assumptions

The safe load capacity of a bridge is based on existing structural condition. To maintain this capacity, it is assumed that the bridge is subjected to competent inspections as often as the existing conditions of the structures require, and that sound judgment will be exercised in determining an appropriate safety margin.

1.5.2 Substructure Consideration

It is a matter of good engineering sense to ensure that the calculated safe load capacity can be supported by the existing substructure elements. Careful attention should then be given to all elements of substructure for evidence of instability that will affect its load-carrying capacity. All available information including as-built plans should be checked to ensure that the substructure have at least the capacity of the lowest rated superstructure member. If no information is available, the engineer should judge the adequacy of substructure based on observations of its condition and performance over time.

1.5.3 Safety Criteria

In general, the safety factors to be used shall be taken from this Manual. However, certain cases where judgment must be exercised in evaluating a structure, safety factors may be adjusted based on site and/or structure conditions as recorded in the most recent inspection report. All data used in the determination of safety factors should be fully documented.

1.5.4 Nonredundant Structures

Nonredundant structures are critical components whose failure would be expected to result in the collapse of the bridge. Such bridge components may exist that could become critical to load capacity calculations. Careful consideration shall be given to nonredundant bridge component during load rating of the bridge.

1.6 LOAD RATING PROCEDURE

The flowchart is presented in Figure 1.6-1. For bridges with complete maintenance and inspection records and information, the load rating will consider the present condition of the bridge members. However, when the bridge data are not available, field survey and presumption of original design is necessary. Reconstruction of as-built plans may have to be done using the data gathered from field survey and measurements. In cases where field measurement is difficult to perform, presumption of original design will have to be performed by back analysis using the original requirements of the code used during the design of the bridge.

- * The process of load rating begins after bridge inspections and condition evaluation with the need to perform load rating calculations decided based on the actual condition of the bridge components or attributes. The decision to perform load rating calculations is discussed in Section 1.3.3. When load rating calculation is not necessary, usual bridge maintenance and inspection procedure is conducted and the results documented and forwarded to the DPWH BMS Unit for recording and filing.
- X Load rating calculations become necessary when:
 - ☑ the condition states of the bridge attributes or components warrants determination of a safe load capacity, or
 - ☑ when changes in the original bridge structural system or configuration was observed during the inspection, including changes in geometry or dead load condition.
- Data collection and in-depth inspection (Engineering Inspection) is then conducted to obtain enough information that will be used for load rating. Data includes As-Built Construction Drawings, Bridge Inventory, Inspection Reports, Testing Results, Surveys, etc.
- X Structural modeling and analysis is then performed, with necessary sketches and calculations on how the structure was modeled, assumptions, load calculations and derivations, computer software documentation and sources of information.

Dead load shall be modeled as accurately as possible. Member conditions including damages and defects may or may not be reflected in the structural model to determine redistribution of forces in the structural system (this will be left to the discretion of the rater if the analysis model warrants the use of existing member condition including deformation and changes in support conditions to determine a more accurate force distribution). However, member section damages and defects shall be reflected in calculating member capacity or resistance.

Load rating vehicle shall be applied to determine the live load effects and demand on the bridge (see Section 3.4 for the rating vehicles).

Load ratings are then evaluated at two levels – the *Inventory Level* and the *Operating Level*. The methods that can be used for load rating evaluation include the allowable stress, the load factor, and the load and resistance factor methods. The results of the load rating evaluation will indicate the

present allowable live load and the maximum permissible live load of the bridge. The details of these load rating methods are presented in Chapter 3.

- * A Load Rating Report (see Section 3.13) shall be prepared to document the load rating calculations.
- * When Load Posting the bridge is necessary, it shall be made by the Responsible Official of the DPWH.
- X All Reports and Documents shall then be forwarded to the BMS Unit for recording and filing.

Figure 1.6-1 Flowchart of Load Rating Procedure

Chapter 2

ENGINEERING AND IN-DEPTH INSPECTION FOR LOAD RATING

2.1 INTRODUCTION

The 2007 Revised Bridge Management System - Bridge Inspection Manual (BMS-BIM) describes in detail the general processes and procedures of bridge Inspection Types 2 and 3. It also provides a more comprehensive damage or defect assessment through a more definite condition rating criteria.

In order to perform bridge load rating, it is necessary to get as much information as possible on the actual condition of bridge attributes and components. These data will be used to prepare structural analysis model that will reflect the existing conditions of the major components of the bridge including geometry, damages, defects, support conditions, etc. Such information can be obtained by an engineering inspection or in-depth inspection.

The in-depth inspection of the bridge will be considered as equivalent to the Engineering Inspection, Type 3 of the revised BMS-BIM. The method of inspection discussed in this Chapter shall be a supplement to the Engineering Inspection (Type 3) described in the revised 2007 BMS-BIM. Refer to the DPWH-JICA Bridge Engineering Inspection Manual developed by the Technical Cooperation Project on Improvement of Quality Management for Highway and Bridge Construction and Maintenance, Phase II, in 2011-2014.

2.2 CONSIDERATIONS FOR IN-DEPTH INSPECTION

An Engineering or In-Depth Inspection is a close-up, hands-on inspection of one or more members above or below the water level, usually performed as a follow-up inspection to the Routine, Condition or Emergency Inspection to better pinpoint any deficiency(ies) found.

Traffic safety management signs/devices and special equipment, such as underbridge inspection equipment, staging and workboats, should be provided when needed. When appropriate, or when necessary to ascertain the existence or extent of deficiencies or damages, non-destructive field tests and/or other material tests may need to be performed.

The inspection shall include load rating to assess the residual capacity of the member/s, depending on the extent of damage or deterioration. Non-destructive field tests and/or other material tests may be performed, if necessary.

The following points should be kept in mind in conducting the in-depth inspection:

i) During the in-depth inspection, bridge components and elements evaluated to be Condition State "3" in the initial inspection and require urgent rehabilitation, shall be made a priority due to the urgent nature of damages. The inspection is normally carried out after conducting a temporary emergency repair of the damaged component or element. However, the need for a permanent measure for repair, rehabilitation or reconstruction of the bridge will be decided after a more detailed and thorough investigation is done under the in-depth inspection stage.

- ii) For bridge components and elements evaluated to be Condition State "2 or 3" in the initial inspection, the in-depth inspection shall be conducted to provide data for judgment on the cause, scale and progress of damages. This survey will then become the basis for judging whether the bridge rehabilitation work is needed or not.
- iii) For damages found to have a progressive tendency, the inspection shall be continued to confirm the progress of damage for a certain period of time.

2.3 PROCEDURE FOR IN-DEPTH INSPECTION

The purpose of the in-depth inspection is to get necessary information to:

- > judge the need for improvement works,
- > determine the safe load capacity of the bridge, and
- > decide an adequate improvement method.

The flowchart of in-depth Inspection procedure for load rating is shown in Figure 2.3-1, where the need for the survey is based on the initial Condition Inspection assessment. Desk survey is then performed to analyze and estimate the cause of damage and clarify the objectives and the inspection items of the in-depth Inspection to be conducted.

During the desk survey, reference is made to the as-built plans, bridge records and inspection reports previously conducted. It is important to note the previous damages observed and the repair or rehabilitation conducted so that the inspectors will be guided as to the present condition of the bridge.

The key to an effective, safe performance of any bridge inspection is proper advance planning and preparation. The inspection plan should be developed based on a review of the Bridge Record and may require a pre-inspection site visit. It is advisable for the inspector to confer with the DPWH District or Regional Offices regarding the bridges to be inspected since they are more familiar with the bridge and may point out peculiarities which may not be apparent at the time of inspection.

As much as possible, the bridge inspection should be scheduled at the time of the year which offers the most suitable conditions for thorough inspections. Substructures of bridges over streams are best inspected at times of low water and structures requiring high climbing should be inspected during seasons when high winds or extremes of temperature are not prevalent.

Bridge inspection equipment consists of those items used for access and those used for actual inspection tasks. The methods and equipment used to gain access to bridge members include ladders, power lift vehicles, power lift staging, rigging and scaffolds, boats, and assisted free climbing.

In planning the inspection, a pre-inspection site visit by the Team Leader will be helpful. If plans are available, the pre-inspection should be done with plans in hand to allow preliminary verification of the structure configuration and details.

Figure 2.3-1 Flowchart of In-Depth Inspection Procedure for Load Rating

The pre-inspection should determine the following points:

- ☑ site access availability and means of,
- \blacksquare areas of potential concern which will:
 - require close attention during subsequent inspections, and
 - form the basis for decisions on timing, weather conditions, traffic controls, and utility protections.

The in-depth Inspection shall then be conducted after all preparatory works have been conducted including:

- (a) review of all relevant data and information through desk survey activities,
- (b) specification of inspection items and establishment of clear objectives of the survey, and
- (c) identification and estimation of the cause and extent of damages by analysis of the following relevant materials:
 - i. damage location,
 - ii. design, construction and inspection records of members,
 - iii. damage records of members or elements caused by earthquake, fire, flood, etc., and
 - iv. similar cases of damage including rehabilitation/repair.

In conducting the in-depth inspection, it is necessary to prepare an inspection guide showing the bridge components and elements to be inspected. Every joint and element of the bridge shall be given a node number and name using symbols or abbreviations to easily identify the joint and the element.

To simplify damage identification, symbols similar to those shown in Figure 2.3-2 can be used during inspection.

Damage Type	Symbol	Damage Type	Symbol
Crack		Honeycomb/Void	
Spalling		Rutting/Erosion	
Exposed Rebar		Water Leakage	
Efflorescence	Euro	Others	

Figure 2.3-2 Damage Symbols

2.4 CAUSES OF DEFECTS AND DAMAGES IN BRIDGE STRUCTURES

In order to properly inspect a bridge, the inspector must be able to recognize the various defects, damages or deterioration in bridge members and its components. It will be more helpful if the inspector knows the causes of such defects and damages and how to inspect them. This section will briefly discuss some of the common defects and damages of bridge components and their causes. Additional discussion on material defects can be found in the BMS-BIM. Refer also to Appendix I for the inspection points on damage-prone members.

The causes of bridge damages may be almost always in conjunction with many factors, making it difficult to specify the causes of such damages. In this section, there are five (5) major factors or causes of damages which can be classified as to either External or Internal factors as presented on Table 2.4-1.

In estimating the causes of damages, it will be necessary to consult with engineers with sufficient experience in structural damage assessment. In some cases, high engineering judgment may be required to estimate the cause and extent of damages.

2.4.1 External Forces

Bridge members and components, once constructed, are always exposed to external forces causing internal stresses to the members which, when the strength or capacity is exceeded, may cause permanent damages.

External Factors						
(a) External Forces						
(1) repeated loads such as overloaded vehicle						
(2) increase in dead loads						
(3) vehicle/vessel collisions						
(4) support settlement (uneven pressure)						
(5) scour / erosion (by floods, heavy rains during typhoon)						
(6) loads by earthquakes						
(7) fire						
(b) Environmental Factors						
(8) change in temperature/drying shrinkage						
(9) salt damage						
(10) exposure to aggressive chemicals (acid attack)						
(11) growth of vegetation on small spaces (e.g. cracks)						
Internal Factors						
(c) Material Deterioration						
(12) alkali-silica reaction						
(13) carbonation						
(14) poor quality						
(d) Fabrication / Construction Faults						
(15) fabrication / construction faults						
(16) poor waterproof / drainage facility						
(e) Structural Factors						

Table 2.4-1 Factors Causing Damages

Figure 2.4-1 illustrates some common external factors that may cause permanent damage to the bridge and its components. However, in relation to load rating of bridges, bridge inspection should focus on the damages to superstructures caused by increase in dead load, overloaded vehicles, vessel/vehicle collision and fire. Such defects and damages lead to decrease in carrying capacity of the section or member being rated.

(15) structural deficiency

In some instances, bridges may be exposed to fire caused by accidents. Depending on the degree and duration of fire exposure, bridge components may be severely damaged and becomes unsafe for public use. Figure 2.4-2 illustrates damage to concrete structures caused by fire. Similarly, extreme temperature due to fire causes loss of tensile and compressive capacity for steel structures causing bridge members to become unstable.

Figure 2.4-1 External Factors Causing Damages to Bridge

Figure 2.4-2 Damage by Fire

2.4.2 Environmental Factors

Drying Shrinkage and Change in Temperature

Drying shrinkage and temperature change involves changes in concrete volume. On exposure to atmosphere, concrete loses some of its original water through evaporation and shrinks. If the member is restrained from moving, shrinkage stresses build-up that may exceed concrete tensile strength and cause shrinkage cracking (see Figure 2.4-3). However, changes in concrete length or volume varies with the moisture content - i.e. concrete that dries out will shrink and concrete that becomes moist will expand.

Similarly, changes in temperature of the concrete structure relates to volume change. If the temperature varies within the member, e.g. temperature gradient, this causes some section of the member to expand more than the other section resulting to an upward or downward movement of the member (see Figure 2.4-4). If the structural member is restrained, stress build-up occurs and can be very significant and may result to tension cracks, shear cracks and buckling.

Figure 2.4-3 Drying Shrinkage

Figure 2.4-4 Temperature Change

<u>Salt Damage</u>

Chlorides can be introduced into the concrete when it comes into contact with the environment containing chlorides such as sea water and aggregates with chlorides or introduced deliberately as an accelerator. Penetration of chlorides usually starts from the surface and moves inward with time. Eventually, the chlorides in contact with the reinforcing bars will cause corrosion when moisture and oxygen are present. As the rust build up in the reinforcement, tensile forces generated by the expansion of the oxide cause concrete to crack and delaminate. When cracking and delamination progress, accelerated corrosion takes place because of easy access of corrosive salts, oxygen and moisture. Figure 2.4-5 illustrates the damage due to salt penetration.

Defects of this nature cause section loss in reinforcing bars, thus decreasing the section capacity against external forces.

Figure 2.4-5 Damage Due to Salt Penetration

As discussed above, intrusion of chemicals including chlorides eliminates reinforcing bar protection due to concrete alkalinity. This enables water and oxygen to attack the reinforcing steel, forming iron oxides (commonly referred to as rust). Corrosion, as an electrochemical process, increases the metal volume as iron is oxidized into rust and easily occupies a volume of up to 10 times of the corroded steel it replaces. The expansive volume creates internal pressure that causes the concrete to yield producing wider cracks, delamination and spalling. Early development of corrosion can be observed as rust stains on the surface of concrete before spalling occur.

Accelerated corrosion will occur if the pH (alkalinity) is lowered (Figure 2.4-6) or if aggressive chemicals (acidic) are introduced into the concrete. Again, structural capacity of concrete member is affected by reinforcing bar corrosion and cracking of the surrounding concrete (Figure 2.4-7).

Figure 2.4-6 Concrete pH and Corrosion Rate

Exposure to Aggressive Chemicals (Acid Attack)

Certain aggressive chemicals in solution (including inorganic acids, organic acids, alkaline solutions, salt solutions, etc.) will attack various constituents of concrete. Such chemicals, in reaction with concrete constituents, may greatly damage the concrete member in contact and reduce its strength considerably.

Acid attack on concrete leads to a reaction between the acid and the calcium hydroxide of the hydrated Portland cement. The reaction produces water soluble calcium compounds, which are leached away leading to concrete disintegration (see Figure 2.4-8). However, it should be noted that certain acids dissolves aggregates in the form of limestone or dolomitic aggregates.

Figure 2.4-8 Concrete Reaction to Acid Attack

2.4.3 Material Deterioration

Alkali-Silica Reaction (ASR)

Alkali-silica reaction, although slow by nature, may create expansion and severe cracking of concrete structure and pavement. In this type of reaction, certain aggregates such as reactive forms of silica react with potassium, sodium, and calcium hydroxide from cement and form a gel around the reacting aggregates. When the gel around the aggregate is exposed to moisture, it expands and creates forces that cause tension cracks around the aggregate. Concrete undergoing alkali-silica reactions exhibits signs of surface map cracking on the exposed surfaces. Once cracking has formed, more moisture penetrates the concrete and accelerates the alkali-silica reaction.

Figure 2.4-9 illustrates the mechanism of alkali-silica reaction.

Figure 2.4-9 Mechanism for Alkali-Silica Reactions

Carbonation

Carbonation of concrete is a reaction between acidic gases in the atmosphere and the products of cement hydration. Carbon dioxide penetrates into the pores of concrete by diffusion and reacts with the calcium hydroxide dissolved in the pore water. As a result, the alkalinity of concrete is reduced to a value that lowers the passive protection of the reinforcing steel and makes it susceptible to corrosion. When the environment is acidic or mildly alkaline (loss of passive protection layer), corrosion sets in if moisture and oxygen gains access into concrete. Carbonation in good quality concrete is slow and it will not occur when concrete is constantly under water.

2.4.4 Construction Faults

<u>Honeycomb</u>

Honeycombs are voids left in concrete due to failure of mortar to effectively fill the spaces among coarse aggregate particles during construction. In some cases, as seen in Figure 2.4-11, honeycombs are caused by improper vibration during concrete placement, resulting in the segregation of the coarse aggregates from the fine aggregates and cement paste. In most cases, honeycombs are the result of insufficient vibration especially during hot temperature, where the entire concrete mix does not physically reach the form surface. *Rock pockets* are generally severe conditions of honeycombs where excessive volume of aggregate is found.

Figure 2.4-11 Honeycombs, Rock Pockets and Air Voids

Honeycombs, rock pockets and air voids reduce the effective areas of the concrete and when located in compressive zones, reduce the capacity of the member. Inspectors should take note of such areas and include in the report so that rating engineers (for Load Rating) can properly assess the section capacity.

Segregation

Concrete segregation results to non-uniform distribution of its constituents. The problem is attributed to high slump mixes, incorrect methods of handling concrete and overvibration. Segregation causes the upper surface of concrete to have excessive paste and fines, which may also possess high watercement ratio, while the lower part contains mostly coarse aggregates (see Figure 2.4-12). The resultant concrete will lack consistency and acceptable durability.

Figure 2.4-12 Concrete Segregation

2.5 VISUAL INSPECTION

The visual inspection of bridge attributes and components play a major role in identifying critical damages in the bridge structure during an in-depth inspection. When performing the visual inspection, the damage types of bridge attributes and components are identified and evaluated as to the degree of defect or damage. The Condition State of the attribute is then evaluated as per BMS-BIM depending on the degree or severity of the defect and the damage.

The visual inspection items shall include the primary and secondary members of the bridge. Table 2.5-1 presents the items to be observed in the field while Table 2.5-2 shows the inspection and examination contents.

	Members			Inspection Items	
Primary Members	Super- Structure	Steel	Main Girder, Cross Beam Stringer, Truss Chord, Steel Deck	Corrosion, Cracks, Looseness and Missing Member, Break/Rupture, Painting Deterioration, Deformation, Abnormal Vibration, Missing Bolts and Rivets.	
		Concrete	Main Girder	Cracks, Spalling, Exposed Rebars, Free Lime, Fracture, Honeycombs, Discoloration/Deterioration, Movement/ Inclination/Settlement/Displacement	
			Slab	Cracks, Spalling, Exposed Rebars, Free Lime, Fracture, Honeycombs, Chipping-off, Damage of Joint, Leakage.	
	Sub- Structure	Concrete	Abutment Pier	Cracks, Spalling, Exposed Rebars, Free Lime, Honeycombs, Wearing, Discoloration, Water Leakage, Loss of Member	
		Foundation		Settlement, Movement, Inclination, Scour	
	Bearing	Steel Bearing		Corrosion, Cracks, Loosening, Falling, Failure, Discoloration, Deformation, Settlement, Movement, Inclination	
		Rubber Bearing		Discoloration, Water Leakage, Deformation, Failure	
		Mortar		Cracks, Failure	
		Anchor Bolt		Corrosion Damage, Cracks, Loosening, Falling, Failure, Deformation	
	Unseating Prevention System	Steel	Restrainer Cable / Bar, Anchor Bar	Corrosion, Missing Bolts	
		Concrete	Shear Block	Cracks, Spalling, Exposed Rebars, Free Lime, Fracture, Honeycombs, Discoloration	
Secondary Members	Lateral Bracing	Steel		Corrosion, Cracks, Looseness and Missing Member, Break/Rupture, Painting Deterioration, Deformation, Abnormal Vibration, Missing Bolts and Rivets.	
		Concrete	Intermediate and End Diaphragm	Cracks, Spalling, Exposed Rebars, Free Lime, Fracture, Honeycombs, Discoloration	
	Sway Bracing	Steel		Corrosion, Cracks, Looseness and Missing Member, Break/Rupture, Painting Deterioration, Deformation, Abnormal Vibration, Missing Bolts and Rivets.	
	Railing	Steel		Corrosion, Cracks, Looseness and Missing Member, Break/Rupture, Painting Deterioration, Deformation, Abnormal Vibration, Missing Bolts and Rivets.	
		Concrete		Cracks, Spalling, Exposed Rebars, Free Lime, Honeycombs, Wearing, Discoloration, Leakage, Loss of Member	
	Median Strip Curbstone	Concrete		Cracks, Spalling, Exposed Rebars, Free Lime, Fracture, Honeycombs, Discoloration	
	Curb and Gutter	Concrete		Cracks, Spalling, Corrosion Damage, Free Lime, Honeycombs, Fracture	
	Pavement	Asphalt		Potholes, Cracks, Rutting, Leakage	
	Expansion Joint	Steel		Corrosion, Cracks, Loosening, Falling, Failure, Abnormal Opening, Abnormal Sound, Deformation, Water Leakage	
		Rubber		Failure, Abnormal Opening, Abnormal Sound, Deformation, Loss of Member, Water Leakage	
	Drainage Facility			Corrosion, Cracks, Loosening, Falling, Failure, Discoloration, Leakage, Deformation, Loss of Member.	
	Lighting			Corrosion, Cracks, Loosening, Falling, Failure, Painting Deterioration, Deformation, Loss of Member.	

Table 2.5-1 Items to be Observed in the Field

	Examination Contents	Inspection and Test Method	Examination Items
e	Cracks	Penetrant test	Present Condition
Ste	Corrosion	Visual inspection	Present Condition
	Cracks, Honeycombs, Reinforcement Corrosion	Photograph of damaged portions.	Present Condition
crete	Measurement of section	Measurement tape	Construction condition
Con	Crack width and crack length	Cracks scale and measurement tape.	Cracks
	Compressive strength	Schmidt hammer test,	Quality of Concrete

Table 2.5-2 Inspection and Examination Contents

2.6 DAMAGE-PRONE MEMBERS

Some members or elements of the bridge structure where stresses are concentrated are relatively easily damaged compared with other attributes. Such members shall be the main focus of inspection and check point. These members are referred to as damage-prone members and presented in Appendix I, together with the common types of damages, for reference.

2.7 DAMAGE RATING AND CONDITION STATES

2.7.1 Member Damage and Condition

In performing bridge load rating, it is important to note the present condition state or degree of damage and defects of bridge members. Such condition will become the basis for determining the remaining capacity of a structural member.

Appendix B of the Revised 2007 BMS – Bridge Inspection Manual presents some common damages observed on site for existing bridges.

Damages and defects found in bridge components and members, including cracks, holes, loss of steel section due to corrosion, rebar corrosion, missing members and bolts, deformation, etc., affect the load carrying capacity of the bridge. Therefore, proper measurements and evaluation of such damages and defects are very important to reflect the actual condition of the member for bridge structural modeling and section capacity determination.

The Bridge Inspector should note the type of damage or defect, location, its scale and extent of coverage. For example, concrete cracks (bending and shear cracks) should be mapped indicating its width and depth of penetration; loss of section due to steel member corrosion should be assessed and recorded; degree of member deformation that could affect its strength should also be noted. These defects or damages will become the basis in determining the remaining section capacities.

2.7.2 Urgent Temporary Countermeasures

In the interest of public and traffic safety, certain conditions of the bridge necessitate undertaking temporary countermeasures (repairs or structural strengthening) on the damaged or defective component/element of the bridge. Such urgent temporary countermeasures shall be done prior to any repair or rehabilitation and does not warrant any load rating evaluation. The following conditions require urgent temporary countermeasures:

- 1) Possibility of collapse of the bridge is anticipated due to the significant damages of superstructure and substructure,
- 2) Possibility of falling of pedestrians or vehicles is anticipated due to fracture or section loss of railings,
- Possibility of driving accident is anticipated due to tire blowout caused by severely deformed expansion joints, loss of expansion joints or due to undulating pavement,
- 4) Drop of concrete segments from curb, railing and slab deck is highly anticipated to harm pedestrians or vehicles passing under the bridge.
- 5) Possibility of bridge falling down is anticipated due to damaged or loss of fall-down prevention devices or abnormal movement of a girder.
- 6) Possibility of road surface caving in is anticipated due to heavily damaged slab deck.
- 7) Abnormal noise from a girder or inspection facilities is adversely affecting nearby residents.
Chapter 3

LOAD RATING

This Chapter discusses the general principles, policies and guidelines on Load Rating of Bridges. The methodology is based on the AASHTO Manual for Condition Evaluation of Bridges (MCEB).

3.1 LOAD RATING PRINCIPLES

In general, the resistance (R) of a structural member (also called attribute) should be greater than the demand (Q) as follows:

Resistance (R) \geq Demand (ΣQ)

or in Equation form,

$$\mathbf{R} \geq \mathbf{Q}_{\mathsf{D}} + \mathbf{Q}_{\mathsf{L}} + \boldsymbol{\Sigma} \mathbf{Q}_{\mathsf{I}}$$
 [3.1-1]

 $\begin{array}{lll} \mbox{where:} & \mbox{R is the member resistance or capacity,} \\ & \Sigma \mbox{Q is the effect of all loads,} \\ & \mbox{Q}_{\mbox{D}} \mbox{ is the effect of dead load,} \\ & \mbox{Q}_{\mbox{L}} \mbox{ is the effect of live load, and} \\ & \mbox{\Sigma} \mbox{Q}_{\mbox{I}} \mbox{ is the effect of load i.} \\ \end{array}$

In the bridge evaluation process, the maximum allowable live load need to be determined and by rearranging Equation [3.1-1], the maximum allowable live load becomes:

$$Q_L \leq R - \{Q_D + \Sigma Q_I\}$$
 [3.1-2]

It then becomes a question of whether a fully loaded vehicle (Rating Vehicle) can be allowed on the bridge or not, or what portion of the rating vehicle can be allowed on the bridge. The portion of the rating vehicle will be given by the ratio between the available capacity for live load effect and the effect of the rating vehicle. This ratio is called the **Rating Factor (RF)** as defined by:

$$RF = \frac{Available Capacity for Live Load Effect}{Rating Vehicle Load Demand} = \frac{R - \{Q_D + \Sigma Q_I\}}{Q_L} [3.1-3]$$

Simplifying the above equation to AASHTO MCEB form with $\Sigma Q_1 = 0$ (see Section 3.4 for loading consideration) gives,

$$\mathbf{RF} = \frac{\mathbf{R} - \mathbf{Q}_{\mathrm{D}}}{\mathbf{Q}_{\mathrm{L}}} = \frac{\mathbf{R} - \mathbf{A}_{\mathrm{1}} \mathbf{D}}{\mathbf{A}_{\mathrm{2}} \mathbf{L} (\mathbf{1} + \mathbf{I})}$$
[3.1-4]

where: RF = is the rating factor for live-load carrying capacity. The rating factor multiplied by the rating vehicle in metric tons gives the rating of the structure.

- R = is the resistance or capacity of the member.
- $Q_D = A_1 D$
- $Q_L = A_2 L(1+I)$
- D = is the dead load effect on the member. For composite members, the dead load effect on the non-composite section and the dead load effect on the composite section need to be evaluated when the Allowable Stress method is used.
- L = is the live load effect on the member.
- I = is the impact factor to be used with the live load effect.
- $A_1 = \gamma_D = is$ factor for dead loads.
- $A_2 = \gamma_L = is$ the factor for live load.

The "load effect" in the preceding equation is the applied loads on the member. Typical load effects are axial force, vertical shear force, bending moment, axial stress, shear stress and bending stresses. Once the load effect to be evaluated is selected, the "capacity" of a member to resist such a load effect may be determined.

When the rating factor is equals to or greater than one, the bridge is capable of carrying the rating vehicle. On the other hand, when the rating factor is less than one, the bridge may be overstressed while carrying the rating vehicle.

The Rating Factor (RF) may be used to determine the rating of the bridge member in metric tons as follows:

Load Rating = Rating Factor x Rating Vehicle Weight

or in Equation form,

$$LR = RF \cdot W$$
 [3.1-5]

where: LR = is the bridge member load rating in metric tons. W = is the weight (in metric tons) of nominal truck used in

determining the live load effect (L)

The rating of the bridge is controlled by the member with the lowest rating in metric tons.

The effects of dead and live loads are the only two principal loads considered in the evaluation process. However, impact should be added to the live load used for the rating.

3.2 LOAD RATING METHOD

Although the basic concept of load rating evaluation is the same, there are three methods commonly used to check the capacity of the members, namely, the Allowable Stress Method (ASM), the Load Factor Method (LFM) and the Load and Resistance Factor Method (LRFM). However, in this Manual, only the allowable stress method and the load factor method are recommended as the load rating methods.

3.2.1 The Allowable Stress Method (ASM)

W

The Allowable Stress (or the Working Stress) Method constitutes a traditional specification to provide structural safety. The actual loadings are combined to produce a maximum stress in a member which is not to exceed the allowable or working stress. The allowable or working stress is found by taking the limiting stress of the material and applying an appropriate factor of safety.

In this method, the capacity of a member is based on the rating level evaluated: Inventory Level-Allowable Stress or the Operating Level-Allowable Stress.

The Rating Factor (RF) under this method is calculated as:

$$RF = \frac{R - A_1 D}{A_2 L(1+I)} = \frac{R - D}{L(1+I)}$$
here $A_1 = 1.0$
 $A_2 = 1.0$
[3.2-1]

Rewriting the above formula in terms of flexural and shear stress,

For moment stresses,
$$RF = \frac{\sigma_b - \sigma_{DL}}{\sigma_{(LL+1)}}$$
 [3.2-2]

For shear stresses,
$$RF = \frac{\tau_v - \tau_{DL}}{\tau_{(LL+I)}}$$
 [3.2-3]

where	$\sigma_{ extsf{b}}$:	allowable stress in flexure
	σ dl :	flexural stress due to dead load
	$\sigma_{\text{(LL+I)}}$:	flexural stress due to live load and impact
	τ_{v} :	allowable stress in shear
	$ au_{\text{DL}}$:	shear stress due to dead load
	$\tau_{(LL+I)}$:	shear stress due to live load and impact

Note: σ_{DL} and τ_{DL} should include superimposed dead load effects (see Example 3 of Appendix III)

3.2.2 The Load Factor Method (LFM)

The Load Factor Method is based on analyzing a structure subject to multiples of the actual loads (factored loads). Different factors are applied to each type of load which reflects the uncertainty inherent in the load calculations. The rating is determined such that the effect of the factored loads does not exceed the strength of the member.

The nominal capacity of structural steel, reinforced concrete and prestressed concrete should be the same as specified in the load factor design of the DPWH Design Guidelines.

The Rating Factor (RF) under this method is calculated as:

$$\mathsf{RF} = \frac{\phi \mathsf{R}_{\mathsf{n}} - \gamma_{\mathsf{D}} \mathsf{D}}{\gamma_{\mathsf{L}} \mathsf{L}(1 + \mathsf{I})}$$
[3.2-4]

where
$$\phi R_n$$
: is the nominal resistance or capacity
 γ_D, γ_L : is the dead and live load factors
 $\gamma_D = 1.3$
 $\gamma_L = 2.17$ (Inventory Level)
 $\gamma_L = 1.3$ (Operating Level)
 $\gamma_L = 2.17$ (Posting Level)

Rewriting the above formula in terms of moment and shear forces,

For moment forces,
$$RF = \frac{M_U - \gamma_D M_{DL}}{\gamma_L M_{(LL+I)}}$$
 [3.2-5]

For shear forces,
$$RF = \frac{V_U - \gamma_D V_{DL}}{\gamma_L V_{(LL+I)}}$$
 [3.2-6]

where	Mυ	:	= ϕM_n , moment strength or capacity
	M_{DL}	:	moment due to dead load
	M (LL+I)	:	moment due to live load and impact
	Vu	:	= ϕV_n , shear strength or capacity
	V_{DL}	:	shear due to dead load
	$V_{(LL+I)}$:	shear due to live load and impact
	φ	:	0.90 for flexure (bending) and 0.85 for shear

Note: M_{DL} and V_{DL} should include superimposed dead load effects (see Example 3 of Appendix III)

For the basic load rating evaluation, the analysis can be simplified by assuming that a similar rating vehicle will occupy all the possible lanes to produce the maximum effect on the structure. This assumption will allow us to use the AASHTO live-load distribution factor approach.

During the structural evaluation for load rating, the location and type of critical failure mode should be first identified – such critical areas and sections differ depending on the structural system and the physical condition of the bridge members.

The determination of structural failure modes for bridge rating depends on the load rating method used, as shown in Table 3.2-1.

RATING METHOD	FAILURE CRITERIA	REMARKS
Allowable Stress	When a portion of a structural member is stressed beyond the allowable stress, the structure is considered failed	 Serviceability and strength is assured using this method since structural member never reaches yield Normally, deflections and vibration are always satisfied under this method
Load Factor	 Failure occurs at two limit states: Serviceability limit state	 In load factor method, satisfying one limit state does not guarantee satisfaction of the other limit state Both serviceability and strength criteria need to be checked When estimating operating rating, serviceability need not be checked

Table 3.2-1 Failure Criteria for Structures

Typical shear and flexural failure modes for simple concrete and steel bridges are shown in Figure 3.2-1 and Figure 3.2-2.

Figure 3.2-2 Typical Shear and Flexure Failure Modes for Steel Bridges

3.3 LOAD RATING LEVELS

There are two levels of rating to which a bridge should be load rated - the Inventory and the Operating Levels.

3.3.1 Inventory Level (To be used for Load Posting)

The life of the bridge depends on the fatigue life or serviceability limits of the bridge materials. Higher frequent loading and unloading may affect the fatigue or serviceability of the bridge components and the bridge life itself. Therefore, in order to maintain the bridge for a longer period, the live-load carrying capacity available for frequently passing vehicle needs to be estimated at service level. This process is then referred to as the **Inventory Rating**.

The Inventory rating level generally corresponds to the **customary design level** of stress but reflects the existing bridge and material condition with regard to deterioration and loss of section. This rating level allows comparison with the capacity for new structures.

The Inventory Rating Level results in a live load that can be safely carried by an existing bridge for an indefinite period of time.

3.3.2 Operating Level (To be used for Permit Loading)

Although very heavy but less frequent vehicles may affect the fatigue life or serviceability of a bridge, bridges can however be allowed to carry **less frequent vehicles** with higher loads than usual. This process of evaluating such load capacity is referred to as the **Operating Rating**.

Load rating based on the Operating rating level reflects the **absolute maximum permissible live load that can be safely carried by the bridge**. Allowing unlimited number of vehicles to use the bridge at the Operating Level may shorten the life of the bridge.

However, extraordinary heavy vehicles or trucks (within the bridge operating level) can only be allowed to pass the bridge structure after complying with the conditions stipulated in the permit to travel.

3.4 LOADINGS

3.4.1 Dead Load (DL)

- Dead load effects should be computed in accordance with the conditions existing at the time of analysis. The minimum unit weight of materials to be used in computing the dead load should be in accordance with the current DPWH design guidelines. Care should be observed in taking the dimensions of the different bridge members and components.
- For composite members, the portion of the dead load acting on the noncomposite section and the portion acting on the composite section should be determined.
- Care should be exercised in estimating the weight of concrete decks since significant variations of deck thickness have been found, particularly on older bridges.
- The approximate overlay thickness should be measured at the time of inspection.
- Assumptions for members of unknown geometry should be done based on experience and engineering judgment. Back calculations may be necessary to determine the missing dimensions.

3.4.2 Rating Live Load (LL)

The live load to be used in the basic rating equation is the MS18 (HS20-44) truck or its equivalent lane loading in accordance with the DPWH Design Guidelines, as shown in Figure 3.4-1.

Although the DPWH Design Guidelines Section 3.2.4 "Highway Loads" specify the minimum design loading to be the MS18 loading or the Alternate Military loading (which results to bigger design loads at shorter spans), only the MS18 vehicle loading will be used for load rating in this manual.

Moreover, the DPWH Design Guidelines Section 3.2.4.6 requires checking the bridge capacity against the demands of the *Permit Design Load* with an increase in the allowable design stresses or the use of a live load factor equivalent to one(1).

A comparison of the design live loads under the DPWH Design Guidelines is presented in Appendix IV of this Manual.

(a) Standard MS18 Truck Load (HS20-44)

(b) Standard MS18 Lane Load

Figure 3.4-1 Rating Live Load

3.4.3 Posting Live Loads

The live load to be used in the rating equation for posting considerations should be any of the typical legal loads shown in Figure 3.4-2. For spans over 60m in length, the selected legal load should be spaced with 9m clear distance between vehicles to simulate a train of vehicles in one lane and a single vehicle load should be applied in the adjacent lane(s).

3.4.4 Wheel Loads (Deck)

In general, stresses in the deck do not control the load rating except in special cases; however, the wheel loads and the calculation of bending moments in the deck should be in accordance with the current DPWH Design Guidelines.

3.4.5 Truck Loads and Number of Traffic Lanes

The live or moving loads to be applied on the deck for determining the load rating is the Standard MS18 (Metric units) or HS20-44 (US units) loading. The number of traffic lanes to be loaded and the transverse placement of wheel lines shall be in accordance with the current DPWH Design Guidelines and the following table.

Roadway Width	Number of Design Traffic Lanes	Remarks			
5.4m to 6.0m (18ft to 20ft)	2	Each lane equal to one-half the roadway width			
Less than 5.4m (18ft)	1	Equal to roadway width			
When conditions of traffic movements and volumes warrant it, fewer traffic lanes than specified by DPWH Design Guidelines may be used					

3.4.6 Lane Loads

Standard MS (HS) Lane Loads, as specified in the current DPWH Design Guidelines, may be used for all spans where it will result in load effects greater than those produced by the standard MS18 trucks.

3.4.7 Sidewalk Loading

Sidewalk loadings used in calculations for safe load capacity ratings should be the probable maximum loads anticipated. Such load varies with site conditions and requires an engineering judgment but in no case will it be more than the value given in the DPWH Design Guidelines.

The Operating level rating should consider full truck and sidewalk loading acting simultaneously on the bridge.

3.4.8 Live Load Effects

- Live load moments in longitudinal stringers and girders may be calculated using 2D or 3D analytical model of the bridge or using the moment table in Appendix III for live load moments produced by the rating and posting loads.
- Live load moments in the intermediate and end floor beams of trusses and through girders may be calculated by statics using simple models and considering the transfer of wheel loads from the stringers to these members.
- Live loads in truss members can be calculated by using influence lines for maximum shears and moments or using design aids or tables for trusses. A 2D or 3D analytical truss model may be used to calculate truss member demand forces. Care should be taken when the structure or panels are too short to permit the entire load to be on the structure with the load positioned to produce the maximum shear or moment.

Figure 3.4-2 Typical Legal Loads Used for Load Posting

3.4.9 Distribution of Loads

The fraction of live load transferred to a single member will be selected in accordance with the current DPWH Design Guidelines. The values represent a possible combination of diverse circumstances.

Other methods can be used including field measured values, analytically calculated values or those derived from advanced structural analysis using the properties of the existing structures. Loadings should be placed in positions causing the maximum response in the components being evaluated.

3.4.10 Impact

Impact should be added to live load used for rating based on the current DPWH or AASHTO recommendations. Reduction in impact values can be made for bridges when conditions of alignment, enforced speed posting, and similar situations require a vehicle to substantially reduce speed in crossing the structure.

3.4.11 Deflection

Basically, live load deflection limitations should not be considered in load rating.

3.4.12 Loads That Can Be Neglected in Load Rating

Since the occurrence of extreme values during the relatively short-duration live loading is extremely small, the following load effects should not be considered in load ratings:

- Longitudinal Loads,
- Environmental Loads,
- 🖙 Wind Loads,
- 📽 Earthquake Loads,
- 🖙 Thermal Loads, and
- Loads Due to Stream Flow

3.5 MATERIAL PROPERTIES AND NOMINAL RESISTANCE OR CAPACITY (R)

The nominal capacity or resistance to be used in the rating equation depends on the structural materials, the rating method and the rating level used. AASHTO Manual for Condition Evaluation of Bridges (MCEB), 2nd Ed., 2000, provides nominal capacities for Allowable Stress and Load Factor methods in Articles 6.6.2 and 6.6.3.

For all bridge components and elements, the material properties used for the rating shall be based on the material grade or design stresses, as specified in the plans or design drawings. When plans are not available or they do not specify material grade or design stresses, the rating engineer must use proper judgment to determine the appropriate material properties based on the information available. Normally, the decision is based on the year the bridge was constructed.

Table 3.5-1 presents the material properties based on the year of construction as given in the AASHTO MCEB. The material property table is based on the predominant grades of materials as recommended by AASHTO and adopted in the Philippines during the early design of bridges.

After making a thorough investigation into all possible sources of information concerning the bridge structure under rating and the rating engineer is still unable to determine the grade of material used or the year of construction, then a conservative estimate of the construction year should be made. The material properties in Table 3.5-1 shall then be used to determine the material properties for the rating.

3.5.1 Capacity under Allowable Stress Method

In the Allowable Stress Method, the resistance or capacity of a member is based on the rating level evaluated:

- Inventory Level Allowable Stress, or
- Operating Level Allowable Stress

The properties used for determining the allowable stress capacity for different materials is given in Table 3.5-1 or those found in the DPWH Design Guidelines or the AASHTO Design Specifications. For convenience, the table provides, where appropriate, the Inventory, Operating, Posting and yield stress values. Allowable stress and strength formulas should be those provided in the AASHTO MCEB, DPWH Design Guidelines or the AASHTO Design Specifications.

Table 3.5-1 Material Properties Used When Actual Grade of Material is	Unknown
---	---------

		Fy or F′c (MPa)	ALLOWABLE STRESS RATINGS		
MATERIAL	CONSTRUCTION		INVENTORY (MPa)	OPERATING (MPa)	POSTING (MPa)
Structural			0.55 Fy	0.75Fy	0.55 Fy
Steel	Prior to 1905	179.3	96.5	134.4	96.5
Bending	1905 to 1936	206.8	110.3	155.1	110.3
(Compression/	1936 to 1963	227.5	124.1	168.9	124.1
Tension)	After 1963	248.2	137.9	186.2	137.9

				0.45Fy	
Structural	Prior to 1905	179.3	58.6	79.3	58.6
Steel Web Shear	1905 to 1936	206.8	65.5	93.1	65.5
	1936 to 1963	227.5	75.8	103.4	75.8
	After 1963	248.2	82.7	110.3	82.7

	Prior to 1954	227.5	124.1	172.4	124.1
Reinforcing	After 1954	275.8	137.9	193.1	137.9
Tension	Grade 50	344.7	137.9	224.1	137.9
	Grade 60	413.7	165.5	248.2	165.5

	Prior to 1959	17.2	6.9	10.3	6.9
Concrete	After 1959	20.7	8.3	13.1	8.3
Bending	1977 to 1981	27.6*	11.0	16.5	11.0
	After 1981	31.0*	12.4	18.6	12.4

* For prestressed concrete

Prestressed Concrete and Steel Strands	Based on actual grade or material used (Refer to Section 6.6.6.3 of the AASHTO MCEB)
--	---

Timber	Based on actual grade or material used	1.33 x	Same as
	(Refer to Chapter 6 of the ASEP NSCP 2001)	Inventory	Inventory

When situations arise that are not covered by the specifications, then rational strength of material formulae should be used consistent with data and plans verified in the field investigation. Deviations from the above specifications should be fully documented.

When the bridge materials or construction are unknown, the allowable stresses should be fixed by the rating engineer, based on field investigations and/or material testing conducted and should be substituted for the basic stresses given herein.

Moreover, for *prestressed concrete members*, the allowable stress rating equations shall be:

For Inventory Rating:

a. Concrete Tension	RF	=	<u> ½√f'c - (Fd + Fp + Fs)</u> Fi	[3.5-1]

b. Concrete Compression	RF	=	$\frac{0.6 f'_{\rm C} - (F_{\rm d} + F_{\rm p} + F_{\rm s})}{F_{\rm l}}$	[3.5-2]

c. Concrete Compression	RF	=	$\frac{0.4 f'_{\rm C} - \frac{1}{2} (F_{\rm d} + F_{\rm p} + F_{\rm s})}{F_{\rm l}}$	[3.5-3]

d Prostrossing Stool Tonsion	DE		$0.8 f_y^* - (F_d + F_p + F_s)$	[2 5 4]
d. Frestressing steer rension	ΚΓ	=	Fi	[3.3-4]

For Operating Rating:

a Drostrossing Stool Topsion	DE		$0.9 f_y^* - (F_d + F_p + F_s)$	[2 5 5]
a. Prestressing steer remsion	КГ	=	Fi	[3.3-5]

where	RF	:	rating factor
	f' _c	:	concrete compressive strength
	½√f'c	:	allowable concrete tensile stress; use ${}^{1}\!\!\!/ \sqrt{f'}{}_{c}$ for corrosive exposure condition
	Fd	:	unfactored dead load stress
	Fp	:	unfactored stress due to prestress after all loses
	F_{s}	:	unfactored stress due to secondary prestress forces
	F١	:	unfactored live load stress including impact
	f*y	:	prestressing steel yield stress

3.5.2 Capacity under Load Factor Method

The nominal capacity of the structural steel, reinforced concrete and prestressed concrete should be the same as specified in the load factor sections of the current DPWH Design Guidelines or the current AASHTO Design Specifications. Nominal strength calculations should take into consideration the observable effects of deterioration, such as loss of concrete or steel-sectional area, loss of composite action or corrosion.

Structural Steel

The yield stresses used for determining load ratings should depend on the type of steel used in the structural member. When specifications of the steel are not available, yield strengths should be taken from the applicable "Year of Construction" column of Table 3.5-1. The capacity of structural steel members should be based on the load factor requirements of the DPWH Design Guidelines.

Allowable fatigue strength should be checked based on the current AASHTO Design Specifications.

Reinforced Concrete

The capacity of concrete members should be based on the strength requirements stated in the DPWH Design Guideline. The area of tension steel at yield to be used in computing the ultimate moment capacity of flexural members should not exceed that available in the section or 75 percent of the reinforcement required for balanced conditions.

Prestressed Concrete

The load rating of prestress concrete members at both the Inventory and Operating Level, should be established in accordance with the strength requirements, including the minimum reinforcement requirements, of the DPWH Design Guidelines. In situations of unusual design with wide dispersion of tendons, the Operating rating might further be controlled by stresses not to exceed 0.90 of the yield point stress in the prestressing steel nearest the extreme tension fiber of the member.

Live loads shall be limited to preserve the relationship between the nominal moment capacity (ϕM_n) and the cracking moment (M_{cr}), as prescribed for new design. This necessitates an adjustment to the value of ϕM_n , used in the flexural strength rating equation. Thus, when $\phi M_n < 1.2 M_{cr}$, the nominal moment capacity becomes (k)(ϕ)(M_n), with k = $\phi M_n / 1.2 M_{cr}$.

The strength rating equation for prestressed concrete shall be:

For Inventory Rating:

Flexural and Shear Strength, $RF = \frac{\phi R_n - (1.3D + S)}{2.17L(1 + I)}$ [3.5-6]

For Operating Rating:

Flexural and Shear Strength, $RF = \frac{\phi R_n - (1.3D + S)}{1.3L(1 + I)}$ [3.5-7]

where	φRn	:	nominal section strength (Moment - ϕM_n ; Shear - ϕV_n)
	D	:	unfactored dead load moment or shear
	S	:	unfactored prestress secondary moment or shear
	L	:	unfactored live load moment or shear
	I	:	impact factor

3.5.3 Conditions of Bridge Structural Members

In the load rating analysis and section nominal capacity or resistance determination, the following factors should be considered to obtain a more realistic assessment of the actual bridge performance and structural behavior:

- ☑ The condition and extent of deterioration of structural components of the bridge should be considered in the computation of the dead load and live load effects when stress is chosen as the evaluation approach and for capacity when force or moment is chosen for use in the basic rating equation.
- ☑ The rating for load-carrying capacity should be based on the most recent field investigation considering all physical features that will affect the structural integrity of the bridge. Adequate data should be taken for damaged or deteriorated sections for proper evaluation in the analysis.
- ☑ Size, number and relative locations of bolts and rivets through tension members should be determined and recorded to determine the net sectional area.
- ☑ Misalignments, bends, or kinks in compression members should be measured carefully as these control its load-carrying capacity.
- ☑ Connections, especially compression members should be checked carefully for eccentricities that should be considered in the structural analysis.
- ☑ Cracks found on concrete members shall be noted and its effect in reducing member capacity or resistance and stiffness shall be considered as follows:
 - <u>Bending Cracks</u>: Effective Section Properties shall be calculated using the original section less the effects of cracks. This effective section property shall be used in the analysis model of the bridge structure.

Section Capacity or Resistance shall be calculated considering crack width and effects on steel reinforcements. When steel reinforcements are severely corroded, consider the loss of section and use the remaining steel cross-section in calculating member capacity.

- <u>Shear Cracks</u>: Concrete shear resistance shall be calculated based on the extent of shear cracks on the section. Basically, concrete shear capacity shall be neglected on members with shear cracks extending to more than half the depth of the member; in this case, consider only the shear resistance contribution of reinforcing steel.
- ☑ The capacity or resistance and section properties of steel member with cracks or severe corrosion shall be calculated based on the effective

cross-section of the members. The effective area of members to be used in the calculations shall be the gross area less the portion that has deteriorated due to cracks, decay or corrosion.

3.6 RATING BRIDGE DECKS

Reinforced concrete decks supported by longitudinal girders with main reinforcement perpendicular to traffic shall be rated according to this section.

- This section covers deck slabs continuous over three or more supports. The slab must be supported by longitudinal girders or stringers with the main slab reinforcement perpendicular to the girders or for deck slab skews less than or equal to 20°. (Deck slab skew is defined as the deviation in degrees of the main reinforcement bars from perpendicular to the girders. The main reinforcement bars may have a different skew than the bridge structure.)
- When design plans are available, use the applicable concrete strength and steel yield stress or use the values in Table 3.5-1 (Year Construction Allowable Bending Stress Table) for the appropriate year of construction.
- When plans are not available for a concrete deck, and the deck shows no sign of failure, then the assignment of rating values will not be required. However, if the condition of the deck indicates probable failure, then rating values shall be calculated and assigned. The rating engineer shall indicate on the rating summary sheet that plans are not available for the deck.
- All other types of bridge decks shall be rated in compliance with the applicable guidelines within this Manual and the current DPWH and AASHTO Codes.

- Usually, deck overhangs at the exterior girder do not control the slab rating. However, the rating engineer should use judgment in determining if the overhang should be rated. A criteria that may be used is: Rate the cantilever portion of the concrete bridge deck if the wheel load can be applied outside the exterior girder by a distance equal to or greater than the distance from the bottom of the slab to the centerline of the top reinforcement, as shown below.
- For reinforced concrete slabs with main reinforcement parallel to traffic, load rating shall be done in accordance with the guidelines for reinforced concrete structures.

3.7 RATING REINFORCED CONCRETE GIRDER BRIDGES

This section covers the rating of reinforced concrete girders and slabs reinforced longitudinally. The types of bridges covered by this section include:

- RCBG Reinforced Concrete Box Girder (Simple and Continuous)
- RCS Reinforced Concrete Slab (Simple and Continuous)
- RCDG Reinforced Concrete Deck Girder (Simple and Continuous)

3.7.1 General

- Computer software used for load rating shall be approved by BOD, DPWH.
- Concrete girders with considerable stress/strain effects due to horizontal curvature, skew, temperature, or other influences shall be modeled as simple, straight beams on pin or roller supports. The analysis output results can then be supplemented with hand calculations to consider any of these influences, as necessary. However, the rating engineer may perform a more refined analysis including all geometric and material considerations using advanced analytical tools and methods.
- Bridges shall be rated using Allowable Stress or Load Factor Method.
- When plans are available, use the minimum yield strength values given in the plans; otherwise, values given in Table 3.5-1 shall be used for the applicable year of construction. If the condition of the girder indicates that full strength should not be used, the rating should be used as appropriate.
- Moment rating shall be performed at standard critical sections (i.e. ½ span lengths for simply supported structures or at points of maximum negative and positive moments for continuous structures), any controlling rebar cut-off section, or any section that shows signs of distress or deterioration.
- Shear rating shall also be performed at critical sections (i.e. at "d" distance from support, points of maximum shears, etc.), any section with change in shear reinforcement, or any section that shows signs of distress or deterioration.
- Rating of cast-in-place box girder bridges can be simplified by separating out the boxes into I - shapes and rate as a typical interior and exterior girder.
 Dead loads and live loads shall be applied as appropriate.

3.7.2 Girders Requiring Rating

- <u>Interior Girders</u> A rating is required for the critical interior girder. More than one interior girder may require an analysis due to variation in span length, girder size, girder spacing, differences in loads, moments, concrete strength and/or reinforcing, condition of member, etc.
- <u>Exterior Girders</u> An exterior girder shall be rated under the following conditions:
 - 1. When the section used for the exterior girder is different than the section used for an interior girder.
 - 2. When the overhang is greater than S/2.
 - 3. When the plans indicate that the curb and floor slab were poured monolithically, the live load distribution factor for the exterior girder shall be calculated and compared to the live load distribution factor for the interior girders. If the live load distribution factor for the exterior girder is equal to or greater than 75% of the live load distribution factor for the interior girders, the exterior girder shall be rated.
 - 4. When the loading condition or the demand forces varies with that of the interior girders.
 - 5. When the existing condition of the exterior girder shows signs of distress or deterioration that could affect the safety of the public.
 - 6. When the rating engineer determines the rating would be advantageous in analyzing the overall condition of the structure.

3.7.3 Calculations

- A set of calculations shall be submitted with each rating. These calculations shall include:
 - \square Derivations for dead loads,
 - \blacksquare Derivations for live loads and distribution factors, and
 - \blacksquare Any other calculations or assumptions used for rating.
- Dead Loads
 - 1. The final sum of all the individual weight components for dead load calculations may be rounded up to the next 50N.
 - 2. Dead loads applied after a cast-in-place concrete deck has cured shall be distributed equally to all girders and, when applicable, treated as composite dead loads. Examples include asphalt, curbs, sidewalks, railing, etc.
 - 3. Use 250N/m² for the unit weight of formworks that has remained in place in the superstructure. An example is closed cell construction, such as cast-in-place concrete box girder.
 - 4. Dead loads applied before a cast-in-place concrete deck has cured shall be distributed to the applicable individual supporting girders and treated as non-composite loads. Examples of this type of dead load are deck slabs, girders, diaphragms, etc. The weight of diaphragms may be treated as point loads or as an equivalent uniform dead load for the span.

5. Dead loads due to utilities shall be considered when it is found to be significant, as per rating engineer's judgment. Application of load due to utilities is left to the rating engineer's discretion.

3.8 RATING PRESTRESSED CONCRETE GIRDER BRIDGES

This section presents the policies and guidelines for rating prestressed girders. The types of girders covered by this section include precast pretensioned girders as follows:

- PCDG Prestressed Concrete Deck Girder (Simple and Continuous)
- PCBG Prestressed Concrete Box Girder (Simple and Continuous)
- PCG Other Prestressed Concrete Girders

3.8.1 General

- Computer software used for load rating shall be approved by BOD, DPWH.
- When rating girders using load factor method, prestressed girders shall not be rated for shear. However, all prestressed girders shall be checked for shear using the appropriate DPWH or AASHTO recommendations.
- The live load distribution factor to be applied to the bridge shall be as prescribed in the current DPWH or AASHTO Design Guidelines and Specifications.
- The rating engineer shall be responsible to determine whether stressrelieved or low relaxation strands were used in the bridge. Such information are normally stated in the plans, but if it is not possible to discern the type of strand used, the rating engineer shall assume stress-relieved strands until 1983 and low-relaxation strands thereafter.
- Prestressed concrete girder bridges with complex geometric alignment, i.e. flared girder bridges or girders with variable overhangs, shall be modeled as simple straight beams on pin or roller supports. The output results can then be supplemented by hand calculations to consider any significant influences, as necessary. However, the rating engineer may perform a more refined analysis including all geometric and material considerations using advanced analytical tools and methods.
- For effective slab widths, the "b" in the equation "12t + b" shall be the width of the top flange of the girder, not the web.

3.8.2 Girders Requiring Rating

- <u>Interior Girders</u> A rating is required for the critical interior girder. More than one interior girder may require an analysis due to variation in span length, girder size, girder spacing, differences in loads, moments, concrete strength and/or reinforcing, condition of member, etc.
- <u>Exterior Girders</u> An exterior girder shall be rated under the following conditions:

- 1. When the section used for the exterior girder is different than the section used for an interior girder.
- 2. When the overhang is greater than S/2.
- 3. The exterior girder of a multi-girder bridge should be rated if it does not have a cast-in-place composite slab. For this case, the dead loads due to sidewalks, curbs and railings shall be applied to only the exterior girder.
- 4. When the loading condition or the demand forces varies with that of the interior girders.
- 5. When the existing condition of the exterior girder shows signs of distress or deterioration that could affect the safety of the public.
- 6. When the rating engineer determines the rating would be advantageous in analyzing the overall condition of the structure.

3.8.3 Calculations

The guidelines under this section shall be the same as Section 3.7.3. However, the rating engineer shall indicate whether stress-relieved or low-relaxation strands were used in the rating calculations.

3.8.4 Simple and Continuous Span Bridges

- Simple span prestressed girders shall be rated as simple span members for all loads (i.e. dead loads, superimposed dead loads, live load, etc.). Span length shall be taken as the distance between the centerline of bearing at abutments or supports.
- Simple span prestressed girders made continuous for composite dead loads and live load plus impact, shall be rated as continuous members for these loads. Span lengths shall be taken as the distance from centerline of bearing at the abutment to centerline or pier, and centerline of pier to centerline of pier as applicable.
- The negative moment analysis at centerline of piers shall be based on the Allowable Stress or the Ultimate Strength (Load Factor) Method. The girder's primary negative moment reinforcement and only the top layer of the slab's distribution reinforcement, within the effective slab width, shall be used in the analysis.
- In cases when the compressive strength of simple span prestressed girders made continuous for composite dead loads and live load plus impact changes from span to span, only the girder with the least compressive strength shall be used to model the entire structure.

3.9 RATING STEEL BRIDGES

This section presents the policies and guidelines in rating steel girder bridges. The types of girders covered by this section are:

 SINCS - Steel I-Girder with Non-composite Concrete Slab (Simple and Continuous)

- SICCS Steel I-Girder with Composite Concrete Slab (Simple and Continuous)
- SBG Steel Box Girder (Simple and Continuous)
- SDG Steel Deck Girder (Simple and Continuous)

3.9.1 General

- All steel girders shall be rated using software approved by BOD, DPWH.
- Steel girders with considerable stress/strain effects due to horizontal curvature, skew, temperature, or other influences shall be modeled as simple, straight beams on pin or roller supports. The analysis output results can then be supplemented with hand calculations to consider any of these influences, as necessary. However, the rating engineer may perform a more refined analysis including all geometric and material considerations using advanced analytical tools and methods.
- Bridges shall be rated using Allowable Stress or Load Factor Method.
- Use the minimum design yield strength value (f_y) and the minimum compressive strength (f'c) indicated in the plans. If no data exists, the rating engineer may refer to Table 3.5-1 based on year of construction or actual tests may be performed to determine material strengths.

3.9.2 Girders Requiring Rating

Refer to Section 3.7.2.

Exterior girders on navigable water channels are prone to vessel collisions. The condition of such exterior girder should be checked thoroughly for evidence of collision or damages. If the exterior girder is badly damaged due to collisions or other factors, its capacity for live load as well as dead load should be checked and redistribution of forces to the next interior girder verified carefully. The additional dead load as well as live load redistributed to the next interior girder should be considered in rating the interior girder.

3.9.3 Calculations

Refer to Section 3.7.3.

As mentioned in Section 3.9.2, additional dead loads due to redistribution of forces from a badly damaged exterior girder shall be considered for the adjacent interior girder.

3.10 RATING TRUSS BRIDGES

This section covers the general policies and guidelines for rating truss bridges. Since majority of truss bridges are structural steel, this section covers the necessary details to rate steel truss bridges.

Bridge decks shall be rated in accordance with Section 3.6.

The types of bridges covered by this section include:

- SDT Steel Deck Truss
- STT Steel Through Truss

3.10.1 General

- Computer software used for load rating shall be approved by BOD, DPWH.
- Truss bridge rating shall be performed in accordance with this Manual and the DPWH and AASHTO Design Guidelines.
- Members designed by allowable or working stress method shall be rated by the working stress method.
- Structural stringer or floor beams shall be rated using the applicable portions of this Manual.
- When design plans are available with given design stresses, the applicable inventory and operating stresses shall be used. Otherwise, reference is made to the year of construction to determine steel strengths. However, it is possible that the year of construction and the year of steel member fabrication are not coincident when salvaged members are used. In this case, the year of steel fabrication shall be used in determining allowable stresses.
- Truss members and its location shall be clearly identified during load rating in a simple manner in accordance with the BMS-BIM or the AICB Manual.
- Section capacities of steel members shall be in accordance with the current AASHTO MCEB or DPWH Design Guidelines.

3.10.2 Members Requiring Rating

- <u>Truss Members</u> A rating is required for all members that make up a truss. If a truss is symmetrical about its midspan centerline and the member conditions are basically the same, then all members on only one side of the centerline require a rating. A rating is not required for a portal or sway bracing members.
- <u>Interior Floor Beams</u> A rating is required for the critical floor beam. The rater should determine the critical floor beam based on the existing member condition, cross-sectional area, grade, loading condition or any factor that may influence the strength of the member.
- <u>End Floor Beams</u> A rating is required for an end floor beam when the crosssectional size is different from that used in an interior floor beam or when the existing condition state requires capacity check or evaluation.
- <u>Interior Stringers</u> A rating is required for the critical stringer. The determination of the critical stringer is similar to a critical floor beam.
- <u>Exterior Stringers</u> A rating is required for an exterior stringer when the crosssectional size is different from that used in an interior stringer or when the existing condition state of the member requires capacity check or evaluation.

3.10.3 Calculations

- A set of calculations shall be submitted with each rating. These calculations shall include:
 - Analysis model of truss (diagram) with member labels and node numbers,
 - Derivation for member section properties,
 - \square Derivations for dead loads,
 - \blacksquare Derivations for live loads and distribution factors, and
 - \blacksquare Any other calculations or assumptions used for rating.
- Live Loads

Live load distribution factors shall be calculated in accordance with the DPWH Design Guidelines.

- Dead Loads
 - 1. The final sum of all the individual weight components for dead load calculations may be rounded up to the next 50N.
 - 2. Dead loads supported by stringers and applied after a cast-inplace concrete deck has cured shall be distributed equally to all stringers. Examples include asphalt and curbs.
 - 3. Dead loads supported by stringers and applied before a cast-inplace concrete deck has cured (or applied when the deck is not cast-in-place concrete) shall be distributed to the applicable individual supporting stringer. Examples include stringer weight and deck, but not necessarily overlay weight.
 - 4. Dead loads due to utilities shall be considered when it is found to be significant, as per rating engineer's judgment. Application of load due to utilities is left to the rating engineer's discretion.

3.11 RATING BRIDGES WITHOUT PLANS

Bridge inventory requires complete set of as-built drawings and inspection records. However, when records of old or existing bridges are not available, it will be necessary to reconstruct the as-built condition drawings of bridges that will become the basis of bridge inventory, inspection and load rating.

In order to complete and update bridge records and data, available sketches and inventory drawings should be checked and verified on site and changes or repairs and rehabilitation made on the bridge should be reflected on these records. When data on bridge members and components are lacking or measurements and fields tests are difficult, if not impossible to perform, structural drawings shall be reconstructed by "Presumption of Original Design". That is, reconstruction of original design shall be done by back-analysis using the governing design specifications during the time of construction.

In this manner, it will be necessary to know the history of the bridge, its original intended function and load capacity. The year of design or construction will provide valuable information as this will provide the governing design specifications on which bridge details were based. When load rating will have to be performed for bridges without plans, the following guidelines shall be observed:

- [1] When no plans or other documentation for a particular bridge structure is available, its numerical rating shall be determined by a Registered Professional Engineer appointed by DPWH. This rating shall be based on a complete and comprehensive engineering or detail inspection as specified by BMS-BIM, AASHTO MCEB or the AICB Manual. The rating engineer can assign a maximum Inventory Rating of 33 metric tons (using MS18 as the rating vehicle) when the following conditions are met:
 - \rightarrow The bridge has been carrying unrestricted traffic for many years,
 - \rightarrow There are no signs of significant capacity-reducing distress or deterioration,
 - → Bridge must exhibit proper proportions and span-to-depth ratios of the main members, indicating that the original design was done by competent engineers,
 - → Construction details including slab thickness and reinforcement cover over any exposed reinforcement conform to the specifications current at the time of the estimated construction date, and
 - → Appearance shows that construction was done by a competent builder.
- [2] When there are signs of capacity-reducing distress or deterioration, an appropriate judgment should be made and an Inventory Rating proportionally less than 33 metric tons shall be given to the bridge structure. The process is the same for operating rating except that the maximum operating rating of 36 metric tons can be assigned.
- [3] Load testing of bridge structures to determine load capacity will be permitted where member details are unknown or an accurate loading history unavailable. Allowable postings will be established at 75% of the proof load vehicle. The proof load vehicle shall be as determined by DPWH based on the rating vehicle given at Section 3.4.2 or the posting vehicle presented at Section 3.4.3. Careful planning for load testing shall be done prior to execution so as not to overstress the bridge.

3.12 LOAD POSTING

1. Posting Vehicle Ratings are used to determine the maximum vehicle loads that will be allowed to travel on bridges. The Posting Vehicles are composed of the maximum vehicle loads currently permitted by law. In the Philippines, the Legal Loads are based on the Maximum Allowable Gross Vehicle Weight (GVW) as per Republic Act RA No. 8794 (Table 3.12-1). Consequently, the Posting Ratings are a means for ensuring the safe use of bridges by vehicles that do not exceed the legal loads. However, for the purposes of load posting, the posting vehicles recommended are those shown in Table 3.12-2.

- 2. In this Manual, *Load Posting shall be done at the Inventory Level* to ensure safe live load that can be carried by the bridge for an indefinite period of time. On the other hand, *Permit Live Load shall be that equivalent to the Operating Level Load Rating*.
- 3. If a structure rating indicates a need for posting, the DPWH Office responsible for the bridge shall perform load rating/posting analysis following Figure 3.12-1 guidelines and load post the bridge. The BMS Unit shall be informed of any changes in load capacity and load posting of the bridge to update the bridge record and inventory.
- 4. The following guidelines will be used for load posting:
 - A bridge should be capable of carrying a minimum gross live load weight of 3.0 metric tons at Inventory or Operating Level. Bridges not capable of carrying a minimum gross live load weight of 3.0 metric tons must be closed.
 - A concrete bridge need not be posted for restricted loading when it has been carrying normal traffic for an appreciable length of time and shows no distress.
 - When it becomes necessary to reduce the allowable live loads in order to conform to the capacity of a structure, such reduction should be based on the assumption that each axle load maintains a proportional relation to the total load of the vehicle or vehicle combination.
 - The live load to be used for posting considerations should be any of the typical posting loads shown in Figure 3.4-2 of Section 3.4.3 and Table 3.12-2.
 - When the Inventory Rating value of a structural member is less than 33 metric tons, the structural member shall be rated for the posting vehicles and the results recorded on the Rating Summary Sheet as shown in Figure 3.13-2.
 - However, if the rating engineer feels that a posting analysis would be helpful in assessing the overall condition of a structure whose Inventory Rating is greater than or equal to 33 metric tons, then the posting rating values may be calculated and recorded on the Rating Summary Sheet.
 - When the posting ratings for bridge members are greater than or equal to 95% of the legal limits (or posting vehicles), the structure can be exempted from posting requirement. The rating engineer shall then make the determination and fill out the Rating Summary Sheet accordingly.
 - The member or section with the lowest rating factor shall govern the load posting of the bridge. Posting load shall be based on the lowest rating factor calculated.
- 5. Load Posting Sign shall be as shown in Figure 3.12-3. Basically, three Truck Vehicle Types shall be used for Load Posting as indicated in Table 3.12-2

TRUCKS/TRAILERS	DESCRIPTION	MAX. ALLOWABLE GVW (in kgs.)
CODE 1-1*	TRUCK WITH 2 AXLES (6 WHEELS)	16,880
CODE 1-2*	TRUCK WITH TANDEM REAR AXLE 3 AXLES (10 WHEELS)	27,250
CODE 1-3	TRUCK WITH TANDEM REAR AXLE 4 AXLES (14 WHEELS)	29,700
CODE 11-1	TRUCK SEMI-TRAILER WITH 3 AXLES (10 WHEELS)	30,380
CODE 11-2	TRUCK SEMI-TRAILER WITH 4 AXLES (14 WHEELS)	30,380
CODE 12-1	TRUCK SEMI-TRAILER WITH 4 AXLES (14 WHEELS)	30,380
CODE 12-2*	TRUCK SEMI-TRAILER WITH 5 AXLES (18 WHEELS)	37,800
CODE 11-3	TRUCK – TRAILER WITH 2 AXLES AT MOTOR VEHICLE & 3 AXLES AT TRAILER (18 WHEELS)	30,378
CODE 11-3	TRUCK –TRAILER WITH 2 AXLES AT MOTOR VEHICLE & 2 AXLES AT TRAILER (14 WHEELS)	30,378
CODE 11-12	TRUCK –TRAILER WITH 2 AXLES AT MOTOR VEHICLE & 3 AXLES AT TRAILER (18 WHEELS)	36,900
CODE 12-3	TRUCK –TRAILER WITH 3 AXLES AT MOTOR VEHICLE & 3 AXLES AT TRAILER (22 WHEELS)	41,000
CODE 12-11	TRUCK –TRAILER WITH 3 AXLES AT MOTOR VEHICLE & 2 AXLES AT TRAILER (18 WHEELS)	37,800
CODE 12-12	TRUCK –TRAILER WITH 3 AXLES AT MOTOR VEHICLE & 3 AXLES AT TRAILER (22 WHEELS)	41,000

Note: *Truck CODE 1-1, 1-2 & 12-2 corresponds to the Posting Vehicles (see Table 3.12-2). **When computing actual load rating use maximum allowable GVW in the amended IRR of RA No. 8794 as shown on page 56.

Figure 3.12-1 Flowchart of Load Posting Guideline

3.13 REPORTING AND DOCUMENTATION

The load rating of bridge should be completely documented in writing including all background information such as field inspection reports, material and load test data, all supporting computations, and a clear statement of all assumptions used in calculating the load rating. If a computer model was used, the input data file should be retained for future use.

3.13.1 Results of Rating Calculations

• The results of rating calculations will be summarized by the rating engineer on the Rating Summary Sheet (see Figure 13.3-2) which will be retained in the structure folder as a record of the adequacy of the structure.

Truck Type	Gross Weight (metric tons)	Truck Configuration	Description	
Туре 1-1	17		2-axle truck	
Туре 1-2	27		3-axle truck	
Туре 12-2	38		3-axle truck with 2- axle semi-trailer	

Table 3.12-2 Load Posting Vehicles

The above vehicles are in metric tons. To distinguish metric tons with other units, the following conversion are used:

Metric Ton	:	1000.00 kilograms	=	2204 lbs.
British Ton (Long Ton)	:	1016.06 kilograms	=	2240 lbs.
US Ton (Short Ton)	:	907.185 kilograms	=	2000 lbs.

- The necessary information of the bridge structure typical of the BMS-BIM record sheet shall be shown on the summary sheet.
- The Summary Sheet shall reflect the Inventory and Operating Ratings obtained for each element requiring an analysis. Ratings shall be reported to tenths of a metric ton.
- The member being rated, including any relevant information shall be stated in the Summary Sheet.
- If posting vehicle analysis is required, record the posting rating on the Summary Sheet. Postings shall be reported and recorded in metric ton of vehicle. Posting loads shall be that corresponding to the member or section with the lowest rating factor.
- State in comments :
 - (a) If the individual critical member rates considerably below other structure members, and is not representative of the entire structure, and
 - (b) Any reduction in cross-section or allowable stresses used to rate the member and the reason for the reduction.
 - (c) Any assumption used in load rating.
 - (d) Recommendations for posting, closure or immediate countermeasures or repair.

Figure 3.13-1 Sample Load Posting Sign

3.13.2 Rating Report Documentation

The rating report submittal for documentation shall include:

- 1. A completed Rating Summary Sheet
- 2. Bridge geometry, description and sources of information
- 3. Results of inspection and testing conducted, including conditions of critical members
- 4. A set of Calculation Sheets showing
 - a. Derivation of dead loads,
 - b. Live load distribution factors,
 - c. Structure model and assumptions
 - d. Computer input information,
 - e. Load Rating calculations (capacity and demand), and
 - f. Other relevant considerations.

- 5. As-built plans and field surveys used in the rating process
- 6. The Rating Engineer and Checker's signature with date signed are required on the Rating Summary Sheet and on the calculation sheets and the first page of each set of computer output.
- 7. All items that compose the rating package shall be placed in a folder that is clearly labeled with the structure name and number.

DEPARTMENT OF PUBLIC WORKS AND HIGHWAYS	SHEET	'GEOMETRY	IION/TESTING	I SHEETS	ILT DRAWINGS
SAMPLE BRIDGE	NG SUMMARY	DESCRIPTION/	RY OF INSPECT	CALCULATION	ENCES/AS-BU
BRIDGE ID BRIDGE NAME ROAD ID/NAME LOCATION STRUCTURE TYPE	RATII	BRIDGE	SUMMA		REFER
RATER CHECKER					

Figure 3.13-2 Load Rating Report and Documentation

DEPARTMENT OF PUBLIC WORKS AND HIGHWAYS		BRIDGE ID:						
		BRIDGE NAME:	BRIDGE NAME:			INDICATE INFORMATION REQUIRED FOR BRIDGE UNDER RATING		
Rating Vehicle:			ROAD ID / ROAD NAME:					
Rating Con	Rating Condition:			LOCATION:				
Asphalt Th Rating Met	hickness : hod:	mm	STRUCTURE					
			TYPE:			/)	
Structural	Member						FILL-UP STRUCTURE	
LOAD RATI	NG (Metric	íons)						
MS 18	Inventory						INDICATE LOAD	
Truck	Operating						RATING FOR MS18 RATING VEHICLE	
	IING (Metric	Tons)		1			, ,	
Type 1-1	Inventory)	
Truck	Operating							
Type 1-2	Inventory						IF LOAD RATING < MS18,	
Truck	Operating						> PERFORM LOAD POSTING USING POSTING VEHICLES	
Type 12-2	Inventory							
Truck	Operating						POSTING	
	opolaling						VEHICLES	
	IYPE 1 - 1	ТҮРЕ	1 - 2	ТҮРЕ	12 - 2			
	Matria Tana				ia Tana	-		
			ne ions			_	RATING/POSTING	
		POSTI	NG LOAD	·······			CALCULATIONS	
Commen	ts:							
•								
•								
•							COMMENT OR	
							ASSUMPTIONS USED	
							RATING	
Rated by:		Date:	Checked b	y:	Date:	- 2	/ Rating Engineer and	

Figure 3.13-3 Load Rating Summary Sheet

	RESOLUTION AMENDING The IRR of R.A. 8794						
WHEREAS, Republic Act No. 8794 (R.A. 8794) entitled "An Act Imposing a Motor Vehicle User's Charge on Owners of all Types of Motor Vehicle and for Other Purposes" was signed into law on June 27, 2000;							
WHEREAS, Section 6 of R.A. 8794 provides that an amount equivalent to twenty-five percent (25%) of the MVUC shall be imposed on trucks and trailers for loading beyond their prescribed gross vehicle weight, provided that no axle load shall exceed thirteen thousand five hundred kilograms (13,500 kgs.);							
WHEREAS, overloaded vehicles, particularly trucks and trailers have tremendous damaging effects on highways safety and traffic operations, and cause a heavy toll on government investment on infrastructure;							
WHEREAS, in line with Section 9 of R.A. 8794 authorizing the Secretaries of the DPWH and the DOTC to jointly promulgate the rules and regulations to implement and carry out its intent objectives, purposes and provisions, the Implementing Rules and Regulations (IRR) of R.A. 8794 was issued on August 16, 2000, which contained provisions on overloading (Article I, paragraph 7c);							
WHEREAS, the DPWH, the DOTC and the DILG, in a Joint Circular issued on November 19, 2001, provided the mechanics of implementation and enforcement of the provisions on overloading among the government agencies concerned. Attached as Annex "A" to the Joint Circular was a table prescribing the maximum allowable gross vehicle weights depending on the configuration of the trucks/trailers;							
WHEREAS, in line with overloading are needed to ensu	WHEREAS, in line with Article IV, paragraph 18 of the IRR of R.A. 8794, it has been determined that modifications on the provisions of the IRR or overloading are needed to ensure proper and effective enforcement and strict observance on the anti-overloading provisions of R.A. 8794.						
NOW, THEREFORE, for following amendment to the In	NOW, THEREFORE, for and in consideration of the foregoing, and by virtue of the powers vested in us by law, we hereby adopt and promulgate the following amendment to the Implementing Rules and Regulations (IRR) of Republic Act No. 8794.						
		Article I.	Common Provis	sions			
 Collection of Revenue from Penalty for Overloadi on trucks and trailers hundred kilograms (1) 	n Road ing–Pu s for loa 3,500 k	Users rsuant to Section 6 of R.A. 8794, i ding beyond their prescribed gro gs.)	an amount equiv ss vehicle weigl	alent to twenty-five percent (25%) of the MVUC shall be imposed ht, provided that no axle load shall exceed thirteen thousand five			
(1) <u>Overloading Det</u> "A", provided th	<u>fined:</u> at the du	There is overloading of trucks and al-wheel single axle load does no	d trailers when th t exceed thirteen	he gross vehicle weight (GVW) exceeds that prescribed in Annex thousand five hundred kilograms (13,500 kgs.)			
(2) <u>Highway Travel</u> special cargoes e	Permit: xceedin	Special Permit to Travel may be i g the corresponding GVW and ve	ssued by the DP hicles with conf	WH and shall be required for vehicles loaded with inseparable/ or iguration different from those shown in Annex "A".			
 (3) Enforcement: a) The DPWH s purposes of the operation of the operation of the operation of the operation of the operation of the b) The weighbring holidays; c) The DOTC, the DOTC, the operation of the operation o	shall ins ne imple he weig idge/poi thru the	tall and operate weighbridge sta mentation of the provisions of R. hbridge stations/portable weighin rtable axle weighing stations sha LTO, shall be responsible for in	tions/ portable w A. 8794 against o g machines. Ill be operated t posing penaltic:	veighing machines at strategic locations along national roads for overloading. The DPWH may outsource to Private Contractors the wenty-four (24) hours a day, including Saturdays, Sundays and s on overloaded vehicles as determined through the operation of			
d) The LTO pers vehicle, a Ter equivalent to infringement	and por sonnel o nporary twenty	Table axle load weighing devices; r its duly deputized DPWH or PN Operator's Permit (TOP) indicat <i>r</i> -five percent (25%) of the Mo	P-TMG personn ing therein the ex- ptor Vehicle Use	hel assigned at the station shall issue to the driver of the overloaded xcess load and the corresponding penalty to be paid in the amount er's Charge (MVUC) applicable to the vehicle at the time of			
(4) <u>Responsibility o</u> traversing the ro responsible for t compliance with	of the tru adway. aking m	<u>uck/trailer owner</u> : The vehicle of Such responsibility starts from the easures to ensure the security ar visions of law against overloading	owner shall be r he vehicle's poir id safety of its p g.	esponsible for ensuring that the vehicle is not overloaded while at of origin up to its final destination. The vehicle owner shall be ersonnel and load in case measures have to be adopted to ensure			
This amendment shall tak hereof with the UP Law Center	e effect	on June 1, 2013 following its put	blication in two	(2) newspapers of general circulation and filing of three (3) copies			
Approved this <u>5th</u> day of	f <u>April</u>	_2013.					
(SGD.) JOSI	EPH EN	MILIO AGUINALDO ABAYA Secretary		(SGD.) ROGELIO L. SINGSON Sectedary Department of Public Works and Highways			
	Department of Transportation and Communications Department of Public Works and Highways						
ANNEX "A" Attachment to ANNEX "A" MAXIMUM ALLOWABLE GROSS VEHICLE WEIGHT (GVW) PER RA 8794							
MAXIMUM ALLOWABL	E GROS	SS VEHICLE WEIGHT (GVW) PER F REVISED 2012)	ANNEX "A" RA 8794	Attachment to ANNEX "A"			
MAXIMUM ALLOWABL		SS VEHICLE WEIGHT (GVW) PER F REVISED 2012) DESCRIPTION TDUCK WITH 2 AVI ES	ANNEX "A" RA 8794 ALLOWABLE GVW (kg)	Attachment to ANNEX "A"			
	E GROS	SS VEHICLE WEIGHT (GVW) PER F REVISED 2012) DESCRIPTION TRUCK WITH 2 AXLES (6 WHEELS) TRUCK WITH TANDEM REAR AXLE	ANNEX "A" RA 8794 ALLOWABLE GVW (kg) 18,000	Attachment to ANNEX "A" REQUIREMENTS FOR APPLICATION			
	E GROS	SS VEHICLE WEIGHT (GVW) PER F REVISED 2012) DESCRIPTION TRUCK WITH 2 AXLES (6 WHEELS) TRUCK WITH TANDEM REAR AXLE 3 AXLES (10 WHEELS) TRUCK WITH TRIDEM REAR AXLE	ANNEX "A" RA 8794 ALLOWABLE GVW (kg) 18,000 33,300	Attachment to ANNEX "A" REQUIREMENTS FOR APPLICATION FOR SPECIAL PERMIT TO TRAVEL			
	E GROS (F CODE 1-1 1-2 1-3	SS VEHICLE WEIGHT (GVW) PER F REVISED 2012) DESCRIPTION TRUCK WITH 2 AXLES (6 WHEELS) TRUCK WITH TANDEM REAR AXLE 3 AXLES (10 WHEELS) TRUCK WITH TRIDEM REAR AXLE 4 AXLES (14 WHEELS)	ANNEX "A" & 8794 ALLOWABLE GVW (kg) 18,000 33,300 35,600	Attachment to ANNEX "A" REQUIREMENTS FOR APPLICATION FOR SPECIAL PERMIT TO TRAVEL 1. Copy of Registration Certificate			
	E GROS (⁽⁾ CODE 1-1 1-2 1-3 11-1	SS VEHICLE WEIGHT (GVW) PER F REVISED 2012) DESCRIPTION TRUCK WITH 2 AXLES (6 WHEELS) TRUCK WITH TANDEM REAR AXLE 3 AXLES (10 WHEELS) TRUCK WITH TRIDEM REAR AXLE 4 AXLES (14 WHEELS) TRUCK-TRAILER WITH 2 AXLES AT MOTOR VEHICLE & 1 AXLEAT TRAILER (10 WHELS)	ANNEX "A" & 8794 ALLOWABLE GVW (kg) 18,000 33,300 35,600 34,000	Attachment to ANNEX "A" REQUIREMENTS FOR APPLICATION FOR SPECIAL PERMIT TO TRAVEL 1. Copy of Registration Certificate 2. Copy of Official Receipt of Registration 3. Technical data of the vehicle, either shown in the			
	E GROS (0 CODE 1-1 1-2 1-3 11-1 11-2	SS VEHICLE WEIGHT (GVW) PER F REVISED 2012) DESCRIPTION TRUCK WITH 2 AXLES (6 WHEELS) TRUCK WITH TANDEM REAR AXLE 3 AXLES (10 WHEELS) TRUCK WITH TRIDEM REAR AXLE 4 AXLES (14 WHEELS) TRUCK-TRAILER WITH 2 AXLES AT MOTOR VEHICLE & 1 AXLE AT TRAILER, WITH 2 AXLES AT TRUCK-TRAILER WITH 2 AXLES AT TRAILER WITH AT TRAILER WITH AT TRAILER WITH AT TRAILER WITH AT TRAILER WITH AT TRAI	ANNEX "A" RA 8794 ALLOWABLE GVW (kg) 18,000 33,300 35,600 34,000 40,600	Attachment to ANNEX "A" REQUIREMENTS FOR APPLICATION FOR SPECIAL PERMIT TO TRAVEL 1. Copy of Registration Certificate 2. Copy of Official Receipt of Registration 3. Technical data of the vehicle, either shown in the manufacturer's brochure or in a vehicle diagram duly signed by the owner:			
	LE GROS (T CODE 1-1 1-2 1-3 11-1 11-2 11-2	SS VEHICLE WEIGHT (GVW) PER F REVISED 2012) DESCRIPTION TRUCK WITH 2 AXLES (6 WHEELS) TRUCK WITH TANDEM REAR AXLE 3 AXLES (10 WHEELS) TRUCK WITH TRIDEM REAR AXLE 4 AXLES (14 WHEELS) TRUCK TRAILER WITH 2 AXLES AT MOTOR VEHICLE & 1 AXLES AT MOTOR VEHICLE & 2 AXLES AT TRAILER (14 WHEELS) TRUCK TRAILER WITH 2 AXLES AT MOTOR VEHICLE & 2 AXLES AT TRAILER (14 WHEELS) TRUCK TRAILER WITH 2 AXLES AT MOTOR VEHICLE & 3 AXLES AT MOTOR VEHICLE & 3 AXLES AT MOTOR VEHICLE & 3 AXLES AT MOTOR VEHICLE & 3 AXLES AT TRAILER	ANNEX "A" & 8794 ALLOWABLE GVW (kg) 18,000 33,300 35,600 34,000 40,600 41,000	Attachment to ANNEX "A" REQUIREMENTS FOR APPLICATION FOR SPECIAL PERMIT TO TRAVEL 1. Copy of Registration Certificate 2. Copy of Official Receipt of Registration 3. Technical data of the vehicle, either shown in the manufacturer's brochure or in a vehicle diagram duly signed by the owner: 3.1 Gross weight of the vehicle 3.2 Plan and side elevation with dimensions of			
	LE GROS ((CODE 1-1 1-2 1-3 11-1 11-2 11-2 11-3 11-3	SS VEHICLE WEIGHT (GVW) PER F SEVISED 2012) DESCRIPTION TRUCK WITH 2 AXLES (6 WHEELS) TRUCK WITH TANDEM REAR AXLE 3 AXLES (10 WHEELS) TRUCK WITH TRIDEM REAR AXLE 4 AXLES (14 WHEELS) TRUCK TRAILER WITH 2 AXLES AT MOTOR VEHICLE & 1 AXLEAT TRAILER (10 WHEELS) TRUCK TRAILER WITH 2 AXLES AT MOTOR VEHICLE & 2 AXLES AT MOTOR VEHICLE & 3 AXLES AT MOTOR VEHICLE & 3 AXLES AT TRAILER (18 WHEELS) TRUCK-SEMI-TRAILER WITH 3 AXLESS M MOTOR VEHICLE & 3 TRUCK-SEMI-TRAILER WITH 3 TRUCK-SEMI-TRAIL	ANNEX "A" & 8794 ALLOWABLE GVW (kg) 18,000 33,300 35,600 34,000 40,600 41,000 39,700	Attachment to ANNEX "A" REQUIREMENTS FOR APPLICATION FOR SPECIAL PERMIT TO TRAVEL 1. Copy of Registration Certificate 2. Copy of Official Receipt of Registration 3. Technical data of the vehicle, either shown in the manufacturer's brochure or in a vehicle diagram duly signed by the owner: 3.1 Gross weight of the vehicle 3.2 Plan and side elevation with dimensions of the vehicle 3.3 Number of wheels per axle			
	E GROS (" CODE 1-1 1-2 1-3 11-1 11-2 11-3 12-1	SS VEHICLE WEIGHT (GVW) PER F REVISED 2012) DESCRIPTION TRUCK WITH 2 AXLES (6 WHEELS) TRUCK WITH TANDEM REAR AXLE 3 AXLES (10 WHEELS) TRUCK WITH TRIDEM REAR AXLE 4 AXLES (14 WHEELS) TRUCK TRAILER WITH 2 AXLES AT MOTOR VEHICLE & 1 AXLEAT TRAILER (10 WHEELS) TRUCK-TRAILER WITH 2 AXLES AT MOTOR VEHICLE & 2 AXLES AT MOTOR VEHICLE & 2 AXLES AT MOTOR VEHICLE & 3 AXLES AT MOTOR VEHICLE & 1 AXLEAT TRAILER (14 WHEELS) TRUCK-TRAILER WITH 2 AXLES AT MOTOR VEHICLE & 3 AXLES AT MOTOR VEHICLE & 1 CHOCK-TRAILER WITH 2 AXLES AT MOTOR VEHICLE & 1 AXLES AT TRAILER (14 WHEELS) TRUCK-SEMI-TRAILER WITH 3 AXLE AT TRAILER (14 WHEELS) TRUCK SEMI-TRAILER WITH 3 AXLES AT MOTOR VEHICLE & 1 AXLES AT MOTOR VEHICLE & 1 AXLES AT MOTOR VEHICLE & 1 AXLES AT TRAILER WITH 3 AXLES AT TRAILER WITH 3 AXLES AT MOTOR VEHICLE & 1 AXLES AT MOTOR VEHICLE & 1 AXL	ANNEX "A" RA 8794 ALLOWABLE GVW (kg) 18,000 33,300 35,600 34,000 40,600 41,000 39,700 14,500	Attachment to ANNEX "A" REQUIREMENTS FOR APPLICATION FOR SPECIAL PERMIT TO TRAVEL 1. Copy of Registration Certificate 2. Copy of Official Receipt of Registration 3. Technical data of the vehicle, either shown in the manufacturer's brochure or in a vehicle diagram duly signed by the owner: 3.1 Gross weight of the vehicle 3.2 Plan and side elevation with dimensions of the vehicle 3.3 Number of wheels per axle 3.4 Load per axle 4. The specific route to be taken and bridge(s) to be			
	E GROOCUCODE 1-1 1-2 1-3 11-1 11-2 11-3 11-1 11-2 11-3 12-1 12-2	SS VEHICLE WEIGHT (GVW) PER F REVISED 2012) DESCRIPTION TRUCK WITH 2 AXLES (6 WHEELS) TRUCK WITH TANDEM REAR AXLE 3 AXLES (10 WHEELS) TRUCK WITH TRIDEM REAR AXLE 4 AXLES (14 WHEELS) TRUCK-TRAILER WITH 2 AXLES AT MOTOR VEHICLE A AXLE AT TRUCK-TRAILER WITH 2 AXLES AT MOTOR VEHICLE 2 AXLES AT MOTOR VEHICLE 2 AXLES TRUCK-TRAILER WITH 2 AXLES AT MOTOR VEHICLE 2 AXLES TRUCK-TRAILER WITH 2 AXLES AT MOTOR VEHICLE 2 AXLES TRUCK-TRAILER WITH 2 AXLES AT MOTOR VEHICLE 2 AXLES TRUCK-SEMI-TRAILER WITH 3 AXLES AT MOTOR VEHICLE & 1 AXLES AT MOTOR VEHICLE & 2 AXLES AT MOTOR VEHICLE & 1 AXLES AT MOTOR V	ANNEX "A" A 8794 ALLOWABLE GVW (kg) 18,000 33,300 35,600 34,000 40,600 41,000 39,700 41,500	Attachment to ANNEX "A" REQUIREMENTS FOR APPLICATION FOR SPECIAL PERMIT TO TRAVEL 1. Copy of Registration Certificate 2. Copy of Official Receipt of Registration 3. Technical data of the vehicle, either shown in the manufacturer's brochure or in a vehicle diagram duly signed by the owner: 3.1 Gross weight of the vehicle 3.2 Plan and side elevation with dimensions of the vehicle 3.3 Number of wheels per axle 3.4 Load per axle 4. The specific route to be taken and bridge(s) to be crossed by the vehicle indicated in a road map, duly signed by the owner.			
	E GROOM () () () () () () () () () () () () ()	SS VEHICLE WEIGHT (GVW) PER F REVISED 2012) DESCRIPTION TRUCK WITH 2 AXLES (6 WHEELS) TRUCK WITH TANDEM REAR AXLE 3 AXLES (10 WHEELS) TRUCK WITH TRIDEM REAR AXLE 4 AXLES (10 WHEELS) TRUCK-TRAILER WITH 2 AXLES AT MOTOR VEHICLE & 1 AXLE TRUCK-TRAILER WITH 2 AXLES AT MOTOR VEHICLE & 2 AXLES AT MOTOR VEHICLE & 2 AXLES TRUCK-TRAILER WITH 3 AXLES AT MOTOR VEHICLE & 1 AXLES AT MOTOR VEHICLE & 3 AXLES AT MOT	ANNEX "A" A 8794 ALLOWABLE GVW (Kg) 18,000 33,300 35,600 34,000 40,600 41,000 39,700 41,500 42,000	Attachment to ANNEX "A" REQUIREMENTS FOR APPLICATION FOR SPECIAL PERMIT TO TRAVEL 1. Copy of Registration Certificate 2. Copy of Official Receipt of Registration 3. Technical data of the vehicle, either shown in the manufacturer's brochure or in a vehicle diagram duly signed by the owner: 3.1 Gross weight of the vehicle 3.2 Plan and side elevation with dimensions of the vehicle 3.3 Number of wheels per axle 3.4 Load per axle 4. The specific route to be taken and bridge(s) to be crossed by the vehicle indicated in a road map, duly signed by the owner. The owner shall evaluate the capacity of the existing			
	E GROOM (U CODE 1-1 1-2 1-3 1-3 11-1 11-2 11-2 11-3 12-1 12-2 12-3 11-11	SS VEHICLE WEIGHT (GVW) PER F VEVISED 2012) DESCRIPTION TRUCK WITH 2 AXLES (6 WHEELS) TRUCK WITH TANDEM REAR AXLE 3 AXLES (10 WHEELS) TRUCK WITH TRIDEM REAR AXLE 4 AXLES (14 WHEELS) TRUCK-TRAILER WITH 2 AXLES AT MOTOR VEHICLE & 1 AXLE AT TRAILER (10 WHEELS) TRUCK-TRAILER WITH 2 AXLES AT MOTOR VEHICLE & 2 AXLES AT MOTOR VEHICLE & 2 AXLES AT MOTOR VEHICLE & 3 AXLES AT MOTOR VEHICLE & 3 AXLES AT MOTOR VEHICLE & 3 AXLES AT MOTOR VEHICLE & 2 AXLES AT MOTOR VEHICLE & 2 AXLES AT MOTOR VEHICLE & 2 AXLES AT MOTOR VEHICLE & 3 AXLES TRUCK-SEMI-TRAILER WITH 3 AXLES AT TRAILER (14 WHEELS) TRUCK SEMI-TRAILER WITH 3 AXLES AT TRAILER (14 WHEELS) TRUCK TRAILER WITH 2 AXLES AT TRUCK SEMI-TRAILER WITH 3 AXLES AT TRAILER (14 WHEELS) TRUCK-TRAILER WITH 2 AXLES AT MOTOR VEHICLE & 2 AXLES AT TRAILER (14 WHEELS) TRUCK-TRAILER WITH 2 AXLES AT MOTOR VEHICLE & 2 AXLES AT TRAILER WITH 3 AXLES AT TRAILER AXLES AT MOTOR VEHICLE & 2 TRUCK-TRAILER WITH 2 AXLES AT MOTOR VEHICLE & 2 TRUCK-TRAILER TRUCK TRAILER TOR TRUCK TRUCK TRAILER TATLER TOR TRUCK TRUCK TRUCK TRAILER TATLER TOR TRUCK TR	ANNEX "A" A 8794 ALLOWABLE GVW (kg) 18,000 33,300 35,600 34,000 40,600 41,000 39,700 41,500 42,000 39,700	Attachment to ANNEX "A" REQUIREMENTS FOR APPLICATION FOR SPECIAL PERMIT TO TRAVEL 1. Copy of Registration Certificate 2. Copy of Official Receipt of Registration 3. Technical data of the vehicle, either shown in the manufacturer's brochure or in a vehicle diagram duly signed by the owner: 3.1 Gross weight of the vehicle 3.2 Plan and side elevation with dimensions of the vehicle 3.3 Number of wheels per axle 3.4 Load per axle 4. The specific route to be taken and bridge(s) to be crossed by the vehicle indicated in a road map, duly signed by the owner. The owner shall evaluate the capacity of the existing derated bridge (with posted load limit of less than 20 tons) to carry the vehicle. If it is necessary to			
	E GROOODE () () () () () () () () () ()	SS VEHICLE WEIGHT (GVW) PER F VEVISED 2012) DESCRIPTION TRUCK WITH 2 AXLES (6 WHEELS) TRUCK WITH TANDEM REAR AXLE 3 AXLES (10 WHEELS) TRUCK WITH TRIDEM REAR AXLE 4 AXLES (10 WHEELS) TRUCK-TRAILER WITH 2 AXLES AT MOTOR VEHICLE & 2 AXLES AT MOTOR VEHICLE & 2 AXLES AT TRAILER (10 WHEELS) TRUCK-TRAILER WITH 2 AXLES AT MOTOR VEHICLE & 3 AXLES AT MOTOR VEHICLE & 2 AXLES AT TRAILER (14 WHEELS) TRUCK-TRAILER WITH 2 AXLES AT TRAILER (14 WHEELS) TRUCK-TRAILER WITH 2 AXLES AT TRAILER (14 WHEELS) TRUCK-TRAILER WITH 3 AXLES AT TRAILER (14 WHEELS) TRUCK-TRAILER WITH 3 AXLES AT TRAILER (14 WHEELS) TRUCK-TRAILER WITH 3 AXLES AT TRAILER (14 WHEELS) TRUCK-TRAILER WITH 2 AXLES AT TRAILER (14 WHEELS) TRUCK-TRAILER WITH 2 (14 WHEELS) TRUCK-TRAILER WITH 2 AXLES AT TRAILER (14 WHEELS) TRUCK-TRAI	ANNEX "A" RA 8794 ALLOWABLE GVW (kg) 18,000 33,300 35,600 34,000 40,600 41,000 39,700 41,500 42,000 39,700 43,500	Attachment to ANNEX "A" Attachment to ANNEX "A" REQUIREMENTS FOR APPLICATION FOR SPECIAL PERMIT TO TRAVEL 1. Copy of Registration Certificate 2. Copy of Official Receipt of Registration 3. Technical data of the vehicle, either shown in the manufacturer's brochure or in a vehicle diagram duly signed by the owner: 3.1 Gross weight of the vehicle 3.2 Plan and side elevation with dimensions of the vehicle 3.3 Number of wheels per axle 3.4 Load per axle 4. The specific route to be taken and bridge(s) to be crossed by the vehicle indicated in a road map, duly signed by the owner. The owner shall evaluate the capacity of the existing derated bridge (with posted load limit of less than 20 tons) to carry the vehicle. If it is necessary to strengthen the bridge, the engineering plan and design computations for shoring and/or reinforcement of the pridee dubt strengt and cold			
	E GROOOU (UCDDE) 1-1 1-2 1-3 11-1 11-2 11-3 11-1 12-2 12-3 11-11 11-12 12-11	SS VEHICLE WEIGHT (GVW) PER F REVISED 2012) DESCRIPTION TRUCK WITH 2 AXLES (6 WHEELS) TRUCK WITH TANDEM REAR AXLE 3 AXLES (10 WHEELS) TRUCK WITH TRIDEM REAR AXLE 3 AXLES (10 WHEELS) TRUCK TRAILER WITH 2 AXLES AT MOTOR VEHICLE & 2 AXLES AT MOTOR VEHICLE & 2 AXLES AT MOTOR VEHICLE & 3 AXLES TRUCK SEMI-TRAILER WITH 3 AXLES AT TRAILER (14 WHEELS) TRUCK TRAILER WITH 2 AXLES AT MOTOR VEHICLE & 3 AXLES AT MOTOR VEHICLE & 3 AXLES AT TRAILER (14 WHEELS) TRUCK TRAILER WITH 2 AXLES AT MOTOR VEHICLE & 3 AXLES AT MOTOR VEHICLE & 3 AXLES AT TRAILER (14 WHEELS) TRUCK-TRAILER WITH 2 AXLES AT MOTOR VEHICLE & 3 AXLES AT MOTOR VEHICLE & 3 AXLES AT TRAILER (14 WHEELS) TRUCK-TRAILER WITH 2 AXLES AT MOTOR VEHICLE & 2 AXLES AT MOTOR VEHICLE & 2 AXLES AT TRAILER (18 WHEELS) TRUCK-TRAILER WITH 2 AXLES AT MOTOR VEHICLE & A XLES AT MOT	ANNEX "A" RA 8794 ALLOWABLE GVW (Kg) 18,000 33,300 35,600 34,000 40,600 41,000 39,700 41,500 42,000 39,700 43,500	Attachment to ANNEX "A" Attachment to ANNEX "A" REQUIREMENTS FOR APPLICATION FOR SPECIAL PERMIT TO TRAVEL 1. Copy of Registration Certificate 2. Copy of Official Receipt of Registration 3. Technical data of the vehicle, either shown in the manufacturer's brochure or in a vehicle diagram duly signed by the owner: 3.1 Gross weight of the vehicle 3.2 Plan and side elevation with dimensions of the vehicle 3.3 Number of wheels per axle 3.4 Load per axle 4. The specific route to be taken and bridge(s) to be crossed by the vehicle indicated in a road map, duly signed by the owner. The owner shall evaluate the capacity of the existing derated bridge (with posted load limit of less than 20 tons) to carry the vehicle. If it is necessary to strengthen the bridge, the engineering plan and design computations for shoring and/or reinforcement of the bridge duly signed and sealed by a Structural Bridge Engineer, shall be submitted.			
	E GROOG (U CODE 1-1 1-2 1-2 1-3 11-1 11-2 11-3 12-1 12-2 12-3 11-11 11-12 12-11 12-12	SS VEHICLE WEIGHT (GVW) PER F REVISED 2012) DESCRIPTION TRUCK WITH 2 AXLES (6 WHEELS) TRUCK WITH TANDEM REAR AXLE 3 AXLES (10 WHEELS) TRUCK WITH TRIDEM REAR AXLE 3 AXLES (10 WHEELS) TRUCK TRAILER WITH 2 AXLES AT MOTOR VEHICLE & 1 AXLE AT TRAILER (10 WHEELS) TRUCK-TRAILER WITH 2 AXLES AT MOTOR VEHICLE & 2 AXLES AT MOTOR VEHICLE & 3 AXLES AT MOTOR VEHICLE & 3 AXLES AT MOTOR VEHICLE & 3 AXLES TRUCK-TRAILER WITH 2 AXLES AT MOTOR VEHICLE & 3 AXLES TRUCK-TRAILER WITH 2 AXLES AT MOTOR VEHICLE & 3 AXLES AT MOTOR VEHICLE & 3 AXLES AT MOTOR VEHICLE & 3 AXLES AT MOTOR VEHICLE & 3 AXLES AT TRAILER WITH 2 AXLES AT TRAILER WITH 3 AXLES AT TRAILER WITH 3 AX WEELS) TRUCK-TRAILER WITH 3 AX WEELS)	ANNEX "A" ALLOWABLE GVW (Kg) 18,000 33,300 35,600 34,000 40,600 41,000 39,700 41,500 42,000 39,700 43,500 43,500	Attachment to ANNEX "A" Attachment to ANNEX "A" Attachment to ANNEX "A" REQUIREMENTS FOR APPLICATION FOR SPECIAL PERMIT TO TRAVEL 1. Copy of Registration Certificate 2. Copy of Official Receipt of Registration 3. Technical data of the vehicle, either shown in the manufacturer's brochure or in a vehicle diagram duly signed by the owner: 3.1 Gross weight of the vehicle 3.2 Plan and side elevation with dimensions of the vehicle 3.3 Number of wheels per axle 3.4 Load per axle 4. The specific route to be taken and bridge(s) to be crossed by the vehicle indicated in a road map, duly signed by the owner. The owner shall evaluate the capacity of the existing derated bridge (with posted load limit of less than 20 tons) to carry the vehicle. If it is necessary to strengthen the bridge, the engineering plan and design computations for shoring and/or reinforcement of the bridge duly signed and sealed by a Structural Bridge Engineer, shall be submitted.			

Chapter 4

LOAD RATING EXAMPLES

4.1 GENERAL

This Chapter illustrates some example cases to show load rating procedures for existing bridge structures. The examples given in this Chapter will refer to this Manual and the AASHTO MCEB for bridge rating and the DPWH Design Guidelines and AASHTO Standard Specifications for the design specifications.

Five examples are presented in this Chapter, which includes:

- ☑ Example 1: Reinforced Concrete Flat Slab Bridge
 - 1-1: Simple
 - 1-2: Continuous
- ☑ Example 2: Reinforced Concrete Deck Girder Bridge
 - 2-1: Simple
 - 2-2: Continuous
- ☑ Example 3: Prestressed Concrete Deck Girder Bridge
 - 3-1: Simple
 - 3-2: Continuous
- ☑ Example 4: Steel I Girder Bridge
 - 4-1: Simple
 - 4-2: Continuous
- ☑ Example 5: Reinforced Concrete Deck Slab

4.2 DESCRIPTION

4.2.1 Reinforced Concrete Flat Slab Bridge

4.2.1.1 Simple

A bridge built in 1958 consists of a simple span supported reinforced concrete flat slab on abutments with span length 8.0m and carriageway width 7.32m curb to curb. The As-Built Plans General Notes obtained indicate that the concrete allowable stress is 6.9MPa and steel allowable stress is137.9MPa. Results of the bridge condition inspection indicate that the bridge is damaged with rebar section loss. There is a 50mm thick wearing course on the deck and barrier rail, sidewalk and other weights can be assumed to be 18.5kN/m.

It is required to load rate the bridge using AASHTO MS18 (33 metric tons) as the rating vehicle. In case of the load rating falls below MS18, the load posting levels will be calculated based on Section 3.4 of this Manual.

The load rating will be done applied 1m widths of RCFS evaluating rebar section loss of the materials occurred. Load rating will be performed using the Load Factor Method.

Figure 4.2-1 RCFS Simple Bridge (Example 1-1)

Results of the Load Rating and Load Posting Calculations according to the computer-based Program are presented in Appendix II, Example 1-1 of this Manual. Summary Results of the load rating calculation is shown in Figure 4.2-2.

	DEPARTMENT OF PUBLIC WORKS AND HIGHWAYS	BRIDGE ID:		
	DAD RATING SUMMARY	BRIDGE NAME:	RCFS SAMPLE 1-1 (Simple)	
Rating Vel	hicle: ITO MS18 (33 Metric Tons)	Road ID / Road Name:		
Rating Condition:		LOCATION:		
Rating Me	thod: Factor Method	STRUCTURE TYPE:	RCFS BRIDGE	

Structural Member (Bending) (Shear	r)
------------------------------------	----

LOAD RATING (Metric Tons)

MS 18	Inventory	40.3		
(33 tons)	Operating	67.0		

LOAD POSTING (Metric Tons)

Type 1-1 Truck (17 tons)	Inventory		
	Operating		
Type 1-2	Inventory		
(27 tons)	Operating		
Type 12-2 Truck (38 tons)	Inventory		
	Operating		

Comments:

- Load Rating done at mid span only for Moment resulted to Rating Factors greater than 1.0.
 Load Posting is not necessary since the bridge can carry normal loads.

(A1)	8.	00 m	
	BRIDGE EI	LEVATION	
Rated by:	Date:	Checked by:	Date:

Figure 4.2-2 Load Rating Summary Sheet for Example 1-1

4.2.1.2 Continuous

Example 1-2 is a bridge built in 1982 consisting of three (3) continuous spans supported reinforced concrete flat slab on wall type RC Piers and RC Cantilever Abutments with span length 8.0m+8.0m+8.0m and carriageway width 7.32m curb to curb. The As-Built Plans General Notes obtained indicate a concrete allowable stress of 8.3MPa and steel allowable stress of 137.9MPa. Results of the bridge inspection indicate that the bridge condition is no damaged. There are 50mm wearing course found on the deck and barrier rail, sidewalk and other weight can be assumed to be 18.5kN/m.

It is required to load rate the bridge using AASHTO MS18 (33 metric tons) as the rating vehicle. In case of the load rating falls below MS18, the load posting levels will be calculated based on Section 3.4 of this Manual.

The load rating will be done applied 1m widths of RCFS. Load rating will be performed using the Load Factor Method.

Figure 4.2-3 RCFS Continuous Bridge (Example 1-2)

Results of the Load Rating and Load Posting Calculations according to the computer-based Program are presented in Appendix II, Example 1-2 of this Manual. Summary Results of the load rating calculation is shown in Figure 4.2-4.
DEPARTMENT OF PUBLIC WORKS AND HIGHWAYS	BRIDGE ID:	
	BRIDGE NAME:	RCFS EXAMPLE 1-2 (Continuous)
Rating Vehicle: AASHTO MS18 (33 Metric Tons)	road ID / Road Name:	
Rating Condition: Asphalt Thickness: 50 mm	LOCATION:	
Rating Method: _Load Factor Method_	STRUCTURE TYPE:	RCFS BRIDGE

Structural Mambar	(Bending)	(Bending)	
Structural Member	at Midspan	at Pier	

MS 18	Inventory	35.9	36.9	
(33 tons)	Operating	60.0	62.0	

LOAD POSTING (Metric Tons)

Type 1-1 Truck (17 tons)	Inventory		
	Operating		
Type 1-2	Inventory		
(27 tons)	Operating		
Type 12-2	Inventory		
(38 tons)	Operating		

Comments:

Load Rating done at mid span and at Pier only for Moment resulted to Rating Factors greater than 1.0.
Load Posting is not necessary since the bridge can carry normal loads.

A1 8.00 m P1) 8.00 m	P2 8.	00 m A2
] BRIDGE EL		
Rated by:	Date:	Checked by:	Date:

Figure 4.2-4 Load Rating Summary Sheet for Example 1-2

4.2.2 REINFORCED CONCRETE DECK GIRDER BRIDGE

4.2.2.1 Simple

A bridge built in 1987 consists of a simply supported reinforced concrete T-beams on abutments. The span length is 10.4m. Bridge carriageway is 7.32m supported by four RC girders with spacing 2.400m on centers. The As-Built Plans General Notes obtained indicate a concrete allowable stress of 8.3MPa and steel allowable stress of 137.9MPa. Results of the bridge inspection indicate that the bridge condition is damaged with shear cracks. There are 50mm wearing course found on the deck and barrier rail weight can be assumed to be 3.6kN/m.

It is required to load rate the bridge using AASHTO MS18 (33 metric tons) as the rating vehicle. In case of the load rating falls below MS18, the load posting levels will be calculated based on Section 3.4 of this Manual.

The load rating will be done for the interior girder evaluating shear cracks of the materials occurred. Load rating will be performed using the Allowable Stress and the Load Factor Method.

DECK SECTION

Figure 4.3-1 RCDG Bridge (Example 2-1)

Results of the Load Rating and Load Posting Calculations according to the computer-based Program are presented in Appendix II, Example 2-1 of this Manual. Summary Results of the load rating calculation is shown in Figure 4.3-2.

DEPARTMENT OF PUBLIC WORKS AND HIGHWAYS	BRIDGE ID:	
	BRIDGE NAME:	RCDG SAMPLE 2-1 (Simple)
Rating Vehicle: AASHTO MS18 (33 Metric Tons)	Road ID / Road Name:	
Rating Condition: Asphalt Thickness: 50 mm	LOCATION:	
Rating Method: _Load Factor Method_	STRUCTURE TYPE:	RCDG BRIDGE

	Interior Girder	Interior Girder	
Structural Member	G2 (Bending)	G2 (Shear)	
	At Midspan	At Support	

MS 18	Inventory	16.7	9.6	
(33 tons)	Operating	27.9	16.1	

LOAD POSTING (Metric Tons)

Type 1-1 Truck (17 tons)	Inventory	11.1	7.6	
	Operating	18.6	12.7	
Type 1-2	Inventory	14.5	8.9	
(27 tons)	Operating	24.2	14.9	
Type 12-2	Inventory	21.8	14.5	
Truck (38 tons)	Operating	36.4	24.2	

Comments:

Figure 4.3-2 Load Rating Summary Sheet for Example 2-1

4.2.2.2 Continuous

A bridge built in 2000 consists of three-span continuous supported reinforced concrete T-beams on concrete bents and abutments. The span lengths consist of 15.0m, 15.0m and 15.0m with a total bridge length of 45.0m. Bridge carriageway is 7.32m supported by four RC girders spaced at 2.400m on centers. The As-Built Plans General Notes obtained indicate a concrete allowable stress of 8.3MPa and steel allowable stress of 137.9MPa. Results of the bridge inspection indicate that the bridge condition is no damaged. There are no wearing course found on the deck and barrier rail weight can be assumed to be 13.0kN/m.

It is required to load rate the bridge using AASHTO MS18 (33 metric tons) as the rating vehicle. In case of the load rating falls below MS18, the load posting levels will be calculated based on Section 3.4 of this Manual.

The load rating will be done for the interior girder of the first span. Load rating will be performed using the Allowable Stress and the Load Factor Method.

BRIDGE ELEVATION

Figure 4.3-3 RCDG Bridge (Example 2-2)

Results of the Load Rating and Load Posting Calculations according to the computer-based Program are presented in Appendix II, Example 2-2 of this Manual. Summary Results of the load rating calculation is shown in Figure 5.3-4.

DEPARTMENT OF PUBLIC WORKS AND HIGHWAYS	BRIDGE ID:	
	BRIDGE NAME:	RCDG SAMPLE 2-2 (Continuous)
Rating Vehicle: AASHTO MS18 (33 Metric Tons)	Road ID / Road Name:	
Rating Condition: Asphalt Thickness: 0 mm	LOCATION:	
Rating Method: _Load Factor Method_	STRUCTURE TYPE:	RCDG BRIDGE

	Interior Girder	Interior Girder	Interior Girder
Structural Member	G2 (Bending)	G2 (Bending)	G2 (Shear)
	At Midspan	At Pier	At Pier

MS 18	Inventory	56.3	41.7	31.2	
(33 tons)	Operating	93.9	69.6	52.0	

LOAD POSTING (Metric Tons)

Type 1-1	Inventory	40.6	43.6	41.3	
(17 tons)	Operating	67.8	72.8	69.0	
Type 1-2	Inventory	50.1	46.8	45.4	
(27 tons)	Operating	83.6	78.1	75.7	
Type 12-2	Inventory	77.1	50.9	59.7	
(38 tons)	Operating	128.7	85.0	99.7	

COMMENTS:

• LOAD RATING IS GOVERNED BY GIRDER G2 (INTERIOR GIRDER).

Figure 4.3-4 Load Rating Summary Sheet for Example 2-2

4.2.3 PRESTRESSED CONCRETE DECK GIRDER BRIDGE

4.2.3.1 Simple

The following example illustrates a simple span precast, prestressed deck girder bridge. The bridge has a span length 35.0m. The bridge is 9.54m wide with a clear carriageway width of 7.32m designed to carry two lanes of traffic. The deck is supported by four (4) precast, prestressed concrete deck girders spaced at 2.1m on centers. The girder is precast at 1.6m depth with 0.203 wall thickness. Deck slab at 0.20m thick is cast in place over the precast I Girder.

SUPERSTRUCTURE CROSS SECTION

Figure 4.4-1 PC Deck Girder Bridge (Example 3-1)

Notes on As-Built Plans indicate that the concrete strengths are 24.2MPa and 38MPa for the slab and I Girder, respectively. In addition, prestress working force is given as 5270kN at 100mm above the girder soffit at midspan. The reinforcing steel and the prestressing steel are assumed to have strengths of fy = 415MPa and fu = 1860MPa.

Load rating calculations will be done for the interior I girder. Evaluation is done at the midspan and support sections of the girder.

The load rating calculation according to the computer-based Program are presented in Appendix II, Example 3-1 of this Manual while the summary results of load rating is shown in Figure 4.4-2.

DEPARTMENT OF PUBLIC WORKS AND HIGHWAYS	BRIDGE ID:	
	BRIDGE NAME:	PCDG SAMPLE 3-1(Simple)
Rating Vehicle: AASHTO MS18 (33 Metric Tons)	Road ID / Road Name:	
Rating Condition: Asphalt Thickness: 50 mm	LOCATION:	
Rating Method: <u>Load Factor Method</u>	STRUCTURE TYPE:	PCDG BRIDGE

	Interior Girder	Interior Girder	
Structural Member	G2 (Bending)	G2 (Shear)	
	At Midspan	At Support	

MS 18	Inventory	43.4	49.6	
(33 tons)	Operating	72.5	82.7	

LOAD POSTING (Metric Tons)

Comments:

- Rating Factors calculated for both serviceability and strength limit states are all greater than one (1).
- Load Posting is not necessary..

Figure 4.4-2 Load Rating Summary Sheet for Example 3-1

4.2.3.2 Continuous

The following example illustrates a three-span continuous precast, prestressed deck girder bridge. The span lengths consist of 35.0m, 35.0m and 35.0m with a total bridge length of 105.0m. The bridge is 9.54m wide with a clear carriageway width of 7.32m designed to carry two lanes of traffic. The deck is supported by four (4) precast, prestressed concrete deck girders spaced at 2.1m on centers. The girder is precast at 1.6m depth with 0.203 wall thickness. Deck slab at 0.20m thick is cast in place over the precast I Girder.

SUPERSTRUCTURE CROSS SECTION

SECTION AT PIER SUPPORT

Figure 4.4-3 PC Deck Girder Bridge (Example 3-2)

Notes on As-Built Plans indicate that the concrete strengths are 24.2MPa and 38MPa for the slab and I-Girder, respectively. In addition, prestress working force is given as 6750kN at 100mm above the girder soffit at midspan. The reinforcing steel and the prestressing steel are assumed to have strengths of fy = 415MPa and fu = 1860MPa.

Load rating calculations will be done for the interior I-Girder. Evaluation is done at the midspan and support sections of the girder.

The load rating calculation according to the computer-based Program are presented in Appendix II, Example 3-2 of this Manual while the summary results of load rating is shown in Figure 4.4-4.

DEPARTMENT OF PUBLIC WORKS AND HIGHWAYS	BRIDGE ID:	
	BRIDGE NAME:	PCDG SAMPLE 3-2 (Continuous)
Rating Vehicle: AASHTO MS18 (33 Metric Tons)	road ID / Road Name:	
Rating Condition: Asphalt Thickness : 50 mm	LOCATION:	
Rating Method: Load Factor Method	STRUCTURE TYPE:	PCDG BRIDGE

	Interior Girder	Interior Girder	Interior Girder	Interior Girder
Structural Member	G2 (Bending)	G2 (Shear)	G2 (Bending)	G2 (Shear)
	At Midspan	At Midspan	At Pier	At Pier

MS 18	Inventory	50.4	53.6	38.5	36.2
(33 tons)	Operating	84.1	89.5	64.3	60.5

LOAD POSTING (Metric Tons)

Figure 4.4-4 Load Rating Summary Sheet for Example 3-2

4.2.4 STEEL I-GIRDER BRIDGE

4.2.4.1 Simple

This example illustrates load rating of an existing Steel I-Girder Bridge built in 1967. The bridge is a simply supported steel girder at 35m long with cast-in-place concrete deck, as shown in the figure below. As-Built Plans for the bridge states that the allowable stresses for steel and concrete are $f_s = 265.0$ MPa and $f_c = 8.3$ MPa, respectively.

In the load rating calculations, assume that:

- the girders are not temporarily supported during concrete pouring of the deck,
- the girder is composite for live load,
- each barrier rail weighs 4.6kN/m.

It is required to load rate the interior girder of this bridge using the Allowable Stress Method.

Figure 4.5-1 Steel Girder Bridge (Example 4-1)

Load Rating was done for the interior girder of this bridge focusing at Midspan and at Support of the steel girder. The load rating calculation according to the computer-based Program are presented in Appendix II, Example 4-1 of this Manual while the load rating summary is shown in Figure 4.5-2.

DEPARTMENT OF PUBLIC WORKS AND HIGHWAYS	BRIDGE ID:	
	BRIDGE NAME:	SIG SAMPLE 4-1 (Simple)
Rating Vehicle: AASHTO MS18 (33 Metric Tons)	Road ID / Road Name:	
Rating Condition: Asphalt Thickness : None mm	LOCATION:	
Rating Method: _Allowable Stress Method	STRUCTURE TYPE:	STEEL I-GIRDER BRIDGE

	Interior Girder	Interior Girder	
Structural Member	G2 (Bending)	G2 (Shear)	
	At Midspan	At Support	

MS 18	Inventory	54.7	231.2	
(33 tons)	Operating	104.4	326.7	

LOAD POSTING (Metric Tons)

Comments:

- Load Rating done at Midspan and at Support resulted to Rating Factors greater than 1.0.
- Load Posting is not necessary since the bridge can carry normal loads.
- Future wearing course is not included in load rating.

Figure 4.5-2 Load Rating Summary Sheet for Example 4-1

4.2.4.2 Continuous

This example illustrates load rating of an existing Steel I - Girder Bridge built in 1967. The bridge is a two-span continuous steel girder at 54m long (27m +27m) with cast-in-place concrete deck, as shown in the figure below. As-Built Plans for the bridge states that the allowable stress for steel and concrete are $f_s = 137.9$ MPa and $f_c = 8.3$ MPa, respectively.

In the load rating calculations, assume that:

- the girders are not temporarily supported during concrete pouring of the deck,
- the girder is composite for live load,
- the girder is braced every 4.5m with bracings weighing 1.47kN per girder,
- each barrier rail weighs 3.6kN/m.

It is required to load rate the interior girder of this bridge using the Allowable Stress Method.

GIRDER LAYOUT

Figure 4.5-3 Steel Girder Bridge (Example 4-2)

Load Rating was done for the interior girder of this bridge focusing on Section 1 (0.40th) and Section 2 (1.0th) points of the steel girder. The load rating calculation according to the computer-based Program are presented in Appendix II, Example 4-2 of this Manual while the load rating summary is shown in Figure 4.5-4.

DEPARTMENT OF PUBLIC WORKS AND HIGHWAYS	BRIDGE ID:	
	BRIDGE NAME:	SIG SAMPLE 4-2 (Continuous)
Rating Vehicle: AASHTO MS18 (33 Metric Tons)	Road ID / Road Name:	
Rating Condition: Asphalt Thickness : None mm	LOCATION:	
Rating Method: _Allowable Stress Method	STRUCTURE TYPE:	STEEL I-GIRDER BRIDGE

	\$1-G2	\$1-G2	\$1-G2	\$1-G2
Structural Member	SECT 1(Bending)	SECT 1 (Shear)	SECT 2(Bending)	SECT 2 (Shear)

MS 18	Inventory	44.2	250.4	47.5	73.5
(33 tons)	Operating	67.8	334.6	79.3	108.9

LOAD POSTING (Metric Tons)

Comments:

- Load Rating done at Section 1(0.40th point) and Section 2(1.0th point) of Span 1 resulted to Rating Factors greater than 1.0.
- Load Posting is not necessary since the bridge can carry normal loads.
- Future wearing course is not included in load rating.

Figure 4.5-4 Load Rating Summary Sheet for Example 4-2

4.2.5 REINFORCED CONCRETE DECK SLAB

This example presents load rating of bridge deck for an existing reinforced concrete deck girder bridge. The bridge built in 1961 has three simple spans (10m + 15.5m + 10m) with 7m wide deck and 180mm thick slab. The concrete decks are supported by three longitudinal reinforced concrete girders monolithic with the deck slab.

The allowable stresses are 8.3MPa and 137.9MPa for concrete compression and rebar tension, respectively.

It is required to load rate the bridge using AASHTO MS18 (33 metric tons) as the rating vehicle.

The load rating will be performed for the inner slab and the cantilever slab sections shown below using the Load Factor Method. Live load demand moments are calculated using the DPWH Design Guidelines moment formulation with slab main reinforcement perpendicular to traffic. Similarly, the wheel load on cantilever slab is distributed over the width recommended by the DPWH Design Guidelines.

Figure 4.6-1 RCDG Bridge (Example 5)

The results of the Load Rating Calculations according to the computer-based Program are presented in Appendix II, Example 5 of this Manual. The Summary Results of the load rating calculation is shown in Figure 4.6-2.

This Example 5 enables to apply to not only RCDG but also to PCDG and SIG.

DEPARTMENT OF PUBLIC WORKS AND HIGHWAYS	BRIDGE ID:	
	BRIDGE NAME:	RCDS SAMPLE 5
Rating Vehicle: AASHTO MS18 (33 Metric Tons)	Road ID / Road Name:	
Rating Condition: Asphalt Thickness: 50 mm	LOCATION:	
Rating Method: <u>Load Factor Method</u>	STRUCTURE TYPE:	RCDG BRIDGE

Structural Member Cantilever Slab Section 1
--

MS 18 Truck (33 tons)	Inventory	40.8	40.3	
	Operating	68.1	67.3	

LOAD POSTING (Metric Tons)

Comments:

- Load rating is performed for cantilever and interior slabs of Span 2.
- The Load Factor Method resulted in load factors greater than 1.0 for both the cantilever and interior slab.
 Load Posting not necessary.

Figure 4.6-2 Load Rating Summary Sheet for Example 5

INTENTIONALLY BLANK

Chapter 5

COMPUTER-BASED PROGRAM ON LOAD RATING

5.1 PURPOSE OF THE COMPUTER-BASED PROGRAM ON LOAD RATING

The purpose of the Computer-based Program on Load Rating of Bridges (CBPLR) is to guide and provide the Department of Public Works and Highways (DPWH) with uniformity in the procedures and policies for determining the load capacity and load rating of existing bridges based on the MLRB.

In any event, this Program should not overrule sound engineering judgment.

5.2 SCOPE OF THE COMPUTER-BASED PROGRAM

This Program has been developed to provide the DPWH with a load rating calculations consistent with the objectives of the DPWH Bridge Management System. The Program is focused on load rating calculations and load capacity calculations with a Program User's Manual.

This Program is applicable to four bridge types and one deck slab as follows.

RCFS (Reinforced Concrete Flat Slab Bridge): Simple RCFS Continuous RCFS

RCDG (Reinforced Concrete Deck Girder Bridge): Simple Interior and Exterior Girder Continuous Interior and Exterior Girder

PCDG (Prestressed Concrete Deck Girder Bridge):Simple Interior and Exterior Girder Continuous Interior and Exterior Girder

SIG (Steel I Girder Bridge)

: Simple Interior and Exterior Girder Continuous Interior and Exterior Girder

RCDECK (Reinforced Concrete Deck Slab)

The calculations by this Program apply to all conventional concrete and steel highway bridge structures in accordance with the DPWH Design Guidelines and the AASHTO Standards. Special bridges or bridges other than highway bridges may need special calculations not covered in this Program. General calculation is given in this Program but more complex calculations must be used to determine actual load rating.

This Program has been developed according to the Manual for Load Rating of Bridges (MLRB).

For all matters not covered by this Program, the current DPWH and AASHTO Specifications and Standards should be used as a guide. However, if bridge member behavior is not consistent with the controlling specifications, such deviations based on the known behavior of the member may be used but should be fully covered.

5.3 PROCEDURE OF THE COMPUTER-BASED PROGRAM

This Program has been developed according to the Manual for Load Rating of Bridges (MLRB). Though this Program has many advantages, it is required in deep care for determination and assumption on load rating calculations as follows.

Advantages

- It's easy to calculate the Load Rating for Major Bridge Types.
- This Program provides 4 Bridge Types and RC Deck Slab, not only Simple and Continuous Bridges but also Interior and Exterior Girder.
- DPWH Engineers can save time for determination of appropriate Load Rating
- DPWH Engineers can avoid inappropriate Load Rating Calculations

Deep Care

- To determine and assume appropriate Bridge Layout and Dimensions
- To determine and assume appropriate Rebar/PC Tendon Schedule inside of Bridges
- To determine and assume appropriate Material Properties
- To determine appropriate evaluation for Bridge Current Condition (Damage)

Damage evaluation applied to this Program is shown in the Figure 5.3-1.

Procedure of the Computer-based Program on Load Rating is provided in detail in the User's Manual for function, installation, operation and others.

The user should follow and understand the procedure of this Program mentioned in the User's Manual as follows (refer to section 6 in the User's Manual).

- Load Rating Principle for Resistance and Demand
- Damage Evaluation
- Difference between Interior/Exterior Girder
- Difference between Simple/Continuous Girder
- Meaning of Coloring cells
- Drawing attached with each bridge types

Procedure for each bridge types is provided with attached all display (screen) and detailed explanations for note, input and applied equations in the output in the User's Manual. (Refer to Figure 5.3-2)

Damage evaluation is considered in this Program as follows:

	Condition State 2-Poor or 3-Bad			
Severity of defect At Midspan At Support	Location (Section)	2-Poor or more at near Support or near Midspan where loaded maximum demand forces		
	For Concrete Girder			
	Cracking	greater than 0.3mm and its spacing smaller than 500mm		
	Rebar exposure	greater than 50 cm ² exposed and corroded		
	For Concrete Deck Slab			
	Cracking	greater than 0.3mm, 2 directions, and its spacing smaller than 500mm		
	Rebar exposure	greater than 50 cm ² exposed and corroded		
	For Steel Girder			
	Corrosion	greater than 10% section loss stratified rust with pitting of metal surface		

Damage evaluation method is as follows:

	Cracking	Not consider concrete section loss of tension fiber
	due to Moment	Consider only by rebar exposure of tension fiber
Concrete Girder and Deck Slab	Cracking due to Shear	Consider only by repar exposure of tension fiber Consider by reduction factor (Φ) according to shear crack depth (Cw) as mentioned below Cw = > 0.5 b applying Φ = 1.0 then Shear resistance due to Concrete Vc = 0 Cw < 0.5 b then Φ = Cw / b then Shear resistance due to Concrete Vc For example, b = 400mm and shear crack depth 150mm Vc [*] = (1-150 / 400) x Vc = 0.625 Vc Shear crack depth Shear crack depth
		b
	Rebar Exposure	Section loss of main Rebar (%) based on exposed Area
	· · · · · · · · · · · · · · · · · · ·	Section loss of stirrups (%) based on exposed Area
Steel Girder	Corrosion	Actual section loss should be applied to steel girder dimension, and then calculate section properties considering section loss

Figure 5.3-1 Damage Evaluation in this Program

B. DEMAND FORCES

BO. INPUT				
	Girder width bw(m)	0.400		
	Girder Web height h (m)	0.600		
FOR	Fillet/Haunch width wf(m)	0.100		
DEAD	Fillet/Haunch height hf(m)	0.100		
LOAD	Slab thickness ts (m)	0.180		
	Slab width ws (m)	2.400		
	Length of Midspan L(m)	10.400		

B1. DEAD LOAD CALCULATIONS			
Uniform Load per meter of Girder (kN/m)	Self-weight of Girder		5.760
	Fillet/Haunch		0.240
	Slab Weight	Continuous	10.368
	Barrier Rail		1.800
	Asphalt Overlay		2.640
	Total		20.810
	Moment (kN-m/m)	Mdl	281.4
Dead Load	Shear (kN)	VDL	108.2

B2. LIVE-LOAD CALCULATIONS				
LIVE-LOAD Type	MS18(HS29)			
Number of live load wheel line	1.312			
Impact factor	0.300	INPUT FOR LIVE LOAD		AD
span	10.400			
May MS10 moment for 10.40m span (wheel line		without Impact	ΜL	236.5
Max. Misternoment for to.40m span / wheel line		with Impact	Mll	403.5
Max. M\$18 shear at a distance "d"		without Impact	VL	117.7
from the support/wheel line		with Impact	VLL	200.7

Figure 5.3-2 Sample Procedure Sheet in the User's Manual

Manual For Load Rating Of Bridges

3rd Edition

APPENDIX I

DAMAGE-PRONE MEMBERS

In this Appendix, inspection points for *damage-prone members* are presented. The focus of these inspection items are members or elements of the bridge structure where stresses are concentrated and are easily damaged compared to other members.

The following Inspection Points are classified by structure and by damage types.

A. Bridge Inspection by Structure (Member) Type

- 1. Steel I Girder
- 2. Steel Box Girder
- 3. Steel Deck Plate
- 4. RC Deck Slab
- 5. PC and RC Girder
- 6. Abutment
- 7. Steel Pier
- 8. RC Pier
- 9. Bearing Shoe
- 10. Expansion Joint

B. Bridge Inspection by Damage Type

- 11. Steel Crack Due to Fatigue
- 12. Deformation
- 13. Corrosion, Loosening and Missing Bolts
- 14. Painting Deterioration
- 15. Corrosion
- 16. Concrete Cracks Due to External Forces, Etc.
- 17. Concrete Cracks Due to Construction Method
- 18. Concrete Crack Due to Environment, Etc.
- 19. Concrete Crack Due to Material Quality
- 20. Splitting, Exposed Concrete Reinforcing Bar
- 21. Honey Comb, Concrete Cavity

CORROSION OF STEEL PLATE

CAUSE OF CRACK PATTERN AT THE BOTTOM OF RC DECK SLAB

PATTERN	ILLUSTRATION	SAMPLE OF CRACK DAMAGE	CAUSE
CRACK AT TRANSVERSE DIRECTION (ONE-WAY)	HAUNCH MAIN GIRDER	MARINA CON	 LACK OF DISTRIBUTION BAR DRYING SHRINKAGE FATIGUE (INITIAL CONDITION)
CRACK AT TRANSVERSE DIRECTION (ONE-WAY)	HAUNCH MAIN GIRDER	THAT ICHT / AST /	 LACK OF RIGIDITY OF MAIN GIRDER FATIGUE (PROGRESS CONDITION)
CRACK AT LONGITUDINAL DIRECTION (ONE-WAY)	HAUNCH MAIN GIRDER	JONES BR. CRACK BOT SLAB (4)	 DIFFERENT RIGIDITY OF GIRDERS SETTLEMENT OF BEARING, SUBSTRUC- TURE
CRACK AT LONGITUDINAL AND TRANSVERSE DIRECTIONS (TWO-WAY)	HAUNCH		 LACK OF SLAB THICKNESS TURTLE BACK CRACK FOR TWO WAY FATIGUE (NEAR FINAL CONDITION)

INSPECTION POINTS · Cracks · Construction joints · Concrete surface (honeycom · Water leakage DAMAGE - PRO (1) Crack	 Deformation by soil pressure Damage of slope protection, erosion vegetation, soil deposit around bearing shoes Settlement, wall rotation
DAMAGE - PR((1) Crack	ONE LOCATION
(1) Crack	
Location Crack Pattern	Cause to be Considered
Regular Crack	Drying shrinkage at construction joint Differential settlement
Surface of Crack at construction joint	Drying shrinkage at construction joint
Abutment 3 Crack around area of reduction • in reinforcement •	Less reinforcement Horizontal force due to earthquake
 Crack with turtle back/web pattern 	Alkali-aggregate reaction Drying shrinkage due to less reinforcing bar Poor Construction
Bottom of Bearing Shoe	Increase in load Less reinforcing bar Horizontal force due to earthquake

Sample : Crack at Backwall

Sample : Crack at Wall

Sample : Crack around Bearing shoe

	BRIDGE INSPECTION POINTS BY STRUCTURE TYPE				
STRUC	CTURE TY	^{/PE} 8 RC Pier			
INSPECTION POINTS					
INSPECTION METHODClose-up Visual Inspection, Measurement by Crack Scale, Photograph, Video, Measurement by Plumb, Level, etc.		on, Measurement by Crack Scale, Photograph, Video, , Level, etc.			
(1) Cr	rack	DAMA	AGE - PRONE LOCATION		
[Location	Crack Pattern	Cause to be Considered		
		① Crack at top surface	Increase in load Settlement of support Early form removal		
		② Crack at top surface of pier center	• Shrinkage		
H	-lammer- -lead Pier	 Crack at bottom surface of cantilever 	Inadequate construction treatment at construction joint Shrinkage		
		Crack in transverse direction of construction joint	 Inadequate construction method at construction joint Shrinkage 		
		Orack with turtle back/web pattern	Alkali-aggregate reaction Shrinkage Inadequate construction method		
		① Crack at top surface of cantilever	Increase in load Settlement of support Early form removal		
		④ Crack at top of column, end portion of haunch	Inadequate construction method at construction joint Shrinkage		
	Piaid	S Crack at whole column	Lack of reinforcing bar for shearing force due to earthquake		
	Frame Pier	Crack at top of column, end portion of haunch	Stress concentration		
		Crack at bottom surface of beam center	Increase in load Settlement of support Early from removal		
		Image: Crack with turtle back/web pattern	Alkali-aggregate reaction Drying shrinkage Inadequate construction method		
	Bearing Shoe Bed	Crack around bearing shoe bed	 Increase in load Lack of reinforcing bar Horizontal force by earthquake 		
		Crack of Hammer Head Pier	Crack of Rigid Frame		
	A h o h to m m m m m m m m m m m m m m m m m m				
	Sample : Grack of Cantilever portion Sample : Grack of Pier				

- When driving piles on soft, unconsolidated soil layer to bearing strata, the possibility of negative skin friction around the pie shaft occurs due to ground settlement, decrease in groundwater (pore water pressure) and increase in load. This negative skin friction leads to damages on the pile foundation
- For the case of spread foundation with soft soil layer below the bearing strata, foundation inclination may occur accompanying soft layer settlement.

Negative Friction

Settlement and Inclination due to Location of Clay under Bearing Strata

* Negative Skin Friction

Negative skin friction (skin friction acting downward) around the pile shaft occurs under ground Settlement/consolidation. Such negative skin friction causes additional pile body force that could damage or break the pile body or pile tip.

(3) Scouring

• Scouring often occurs during flood. For spread foundation, the cavity under the footing formed by bed scouring could cause pier settlement and deformation. Flood water pressure could cause overturning of such scoured pier, followed by structure collapse. After the flood, the cavity can be filled up again by sedimentation of river bed.

BRIDGE INSPECTION POINTS BY STRUCTURE TYPE				
STRUCTURE TYPE	(9) Bearing Shoe			
INSPECTION POINTS	Bearing Shoe Bed / Base	Damage of mortar bed / base Oamage of substructure around bearing shoe		Cracks
	Anchor Bolt	Pull-out of boltDamaged		
	Set Bolt	Loosened boltDamaged	CorrosionLoosened nut	
	Bearing Shoe	 Damaged side block Pin and roller damage Settlement and eccentricity 	Fallen-off rollerCorrosionMovement	
	Movement of Bearing Shoe	Abnormality of expansion and rotation due to: • Temperature change • Creep and shrinkage • Deflection		

(1) Bearing Shoe Bed Damage

• Crack, damage at bearing shoe bed

Sample : Damage of Mortar

(2) Anchor Bolt Damage

Sample : Corrosion of Anchor Bolt

(3) Set Bolt Damage

• Damage of structure at bearing shoe bed

Sample : Damage of Pier Top

Sample : Bending of Anchor Bolt
(4) Bearing Shoe Condition

• Damage of side block of bearing shoe

Sample : Damage of side block

• Damage of Pin, Roller

Sample : Damage of side block

Sample : Corrosion of Pin

• Settlement and Eccentricity of bearing Shoe

Sample : Falling of Roller

Sample : Settlement of bearing shoe

Sample : Eccentricity of bearing shoe

(5) Bearing Movement

Sample : Contact at Stopper of movement bearing

Sample : Contact at Pin

	BRIDGE INSPECTION POINTS BY DAMAGE TYPE						
DAMAGE TYPE	1 Corrosion, Loosening and	Missing Bolt					
INSPECTION METHOD	Close-up Visual Inspection, Inspection by Test Hammer, Measurement by Torque Wrench.						
 Bolt and rivet dar influence of dan Bolts at girder en Stress corrosion a Loosening of bolt space between Delayed fracture due to stress con to confirm if the 	 Bolt and rivet damage includes corrosion, loosening, missing, etc. The location of damage, cause of damage, influence of damage should be marked and indicated. Bolts at girder end and lower flange connection where water usually stays deteriorates and corrodes heavily. Stress corrosion and cracks at bolt holes should be marked in these areas. Loosening of bolts by vibration is usually observed at secondary member due to lack of fastening force or void space between member. Delayed fracture of high tension bolt that occurs suddenly for F11T or stronger bolt is called brittle failure. This is due to stress concentration caused by damage on the bolt, fatigue crack, corrosion pit, etc. Therefore, we have 						
	DAMAGE - PRONE L	OCATION					
The following dan Corrosion due Loosening due Missing high str Loosening due 	nages are illustrated below: to rain water e to vibration rength bolts due to delayed fracture e to corrosion Loosening due to corrosion Missing of bolt at sway bracing	<image/> <caption></caption>					
Corroded bolt Missing bolt at portion of mai	Connected n girder Delayed fracture of F11 Box Girder	Sample : Missing of Bolt					

	BRIDGE INSPECTION POINTS BY DAMAGE TYPE					
DAMAGE TYPE	1 Painting Deteriorati	ion				
INSPECTION METHOD	Close-up Visual Inspection, Dist	ance Visual Inspection.				
 Steel bridge pain the member is sur- over the whole b develop 	 Steel bridge painting normally deteriorates gradually, thus losing its rust-protection ability. Under this condition, the member is susceptible to progressive corrosion. However, painting deterioration does not progress uniformly over the whole bridge. Part of the member paint will peel-off, chalking and cracking will then occur until rust develop 					
• Discoloration of t	he painting top coat sometimes spo	ils the bridge aesthetics.				
	DAMAGE - PRONE LOCATION					
Sample	Sample : Deterioration of painting 1 Sample : Deterioration of painting 2					
<u>.</u>						

BRIDGE INSPECTION POINTS BY DAMAGE TYPE					
DAMAGE TYPE	1 Concrete Crack due to Environment, etc.				
INSPECTION METHOD	Close-up Visual Inspection, Measurement by Crack Scale, Photograph, Video, etc.				
	CAUSE AND PATTERN OF CRACK				
 (1) Chemical Actio Crack occurs a on concrete su Rust of exposed occurrence. 	<text></text>				
	Sample : Crack				
(3) Rust of Reinforcin • Under this cond by flowing-out of dirty In case of reman partially splits.	<text><text><text></text></text></text>				

	BRIDGE INSPECTION PO	NTS BY DAMAGE TYPE				
DAMAGE TYPE	2 Efflorescence of Cor	ncrete				
INSPECTION METHOD	Close-up Visual Inspection, Distar	nce Visual Inspection, Photograph, Video, etc.				
When construction causing water to of concrete.	When construction is not properly done, including poor compaction and inferior joints, concrete cracks causing water to penetrate and react with concrete cement producing efflorescence spot at the surface of concrete.					
Efflorescence ca	an indicate the index rating of crack	occurring at different crack locations				
• It should be noted joints and girder e ponding and cra	d that efflorescence cannot occur withe ends. It is thus important to recognize that ck.	out water and can be commonly observed on construction at the source of efflorescence could be by water leak,				
	Sample : Pier	Sample : Bottom Surface of Deck Slab				

INTENTIONALLY BLANK

Manual For Load Rating Of Bridges

3rd Edition

APPENDIX **II**

LOAD RATING EXAMPLES

This Section presents the following examples of load rating calculations according to the Computer-based Program on Load Rating:

5	5	Page
Example 1:	Reinforced Concrete Flat Slab Bridge	115
Example 1-1:	Simple	116
	Computer based calculation	116
	Manual calculation	127
Example 1-2:	Continuous	134
	Computer based calculation	134
	Manual calculation	145
Example 2:	Reinforced Concrete Deck Girder Bridge	155
Example 2-1:	Simple	156
	Computer based calculation	156
	Manual calculation	167
Example 2-2:	Continuous	176
	Computer based calculation	176
	Manual calculation	187
Example 3:	Pre-stressed Concrete Deck Girder Bridge	199
Example 3-1:	Simple	200
	Computer based calculation	200
	Manual calculation	212
Example 3-2:	Continuous	222
	Computer based calculation	222
	Manual calculation	234
Example 4:	Steel I - Girder Bridge	249
Example 4-1:	Simple	250
	Computer based calculation	250
	Manual calculation	257
Example 4-2:	Continuous	264
	Computer based calculation	264
	Manual calculation	271
Example 5:	Reinforced Concrete Deck Slab	279
	Computer based calculation	280
	Manual calculation	286

Examples		Load Rating		Load Posting	
		LFM	ASM	LFM	ASM
Reinforced Concrete	Simple	0	0	0	\bigcirc
Flat Slab Bridge (RCFS)	Continuous	0	0	0	0
Reinforced Concrete	Simple	0	\bigcirc	0	\bigcirc
(RCDG)	Continuous	0	0	0	\bigcirc
Pre-stressed Concrete	Simple	0	0	0	0
(PCDG)	Continuous	0	\bigcirc	0	\bigcirc
Steel I - Girder Bridge	Simple		0		0
(SIG)	Continuous		0		0
Reinforced Concrete Deck Slab (RCDECK)		0			0

Load Factor Method (LFM) and Allowable Stress Method (ASM) to be used on above examples of load rating and load posting calculations are the followings.

Note: For Pre-stressed Concrete Deck Girder Bridge, LFM is used only under Strength Limit State, on the other hand, ASM is used only under Serviceability Limit State. INTENTIONALLY BLANK

EXAMPLE 1

REINFORCED CONCRETE FLAT SLAB BRIDGE

Example 1-1: Simple

Example 1-2: Continuous

RCFS SIMPLE

A. GENERAL

BACK TO MENU

A1. BRIDGE DESCRIPTION								
Bridge Loo	cation	REGION	VII					
Bridge Na	me							
Bridge	Simple or Cor	ntinuous	Simple					
Туре	Number of Sp	an	1					
Bridge of V	Nidth (curb to	curb) (m)	7.32					
Number o	f Lanes		2					
Bridge Ler	ngth (m)		8.000					=8.000m
Year Built		1958						
Structuro	Superstructure	Э	Reinforced Concrete Slab					
311001016	Substructure		Wall Type RC Piers and RC Cantilever Abutments					
Wearing	thickness (mm	า)	50					
Course	material		Asphalt					
Matorial P	roportion		fc=	6.9	Мра	fs=	137.9	Мра
Materiari	ropenies		f'c=	17.2	Мра	fy=	275.8	Мра
		Weight of barrier rail Wbr =		Wbr =	18.5	KN/m		
Assumption		Concrete	Concrete Unit Weight Wu =		24.0	KN/m ³		
		Asphalt Unit Weight Wa =		22.0	KN/m ³			
Others			Rating Live	e Load is AA	SHTO MS18	(HS20-44)		

Matorial	Year of	foorfu	fc or fs			
Material	Construction	I C OF TY	Inventory	Operating	Posting	
	Prior to 1959	17.2	6.9	10.3	6.9	
Concrete	after 1959	20.7	8.3	13.1	8.3	
Concrete	1977 to 1981	27.6	11.0	16.5	11.0	*pc
	after 1981	31.0	12.4	18.6	12.4	*pc
	Prior to 1954	227.5	124.1	172.4	124.1	
Rebar	after 1954	275.8	137.9	193.1	137.9	
	Grade 50	344.7	137.9	224.1	137.9	*pc
	Grade 60	413.7	165.5	248.2	165.5	*pc

A2. BRIDGE LAYOUT AND DIMENSION

BRIDGE ELEVATION

DECK SECTION

Bridge Layout and Dimension			
Overall width (m)	9.540		
Carriageway Width (m)	7.320		
Slab width bw(m)	8.540		
Slab thickness h (m)	0.450		
Span Length L(m)	8.000		

B. DEMAND FORCES

BO. INPUT				
FOR	Slab width bw(m)	8.540		
DEAD	Slab thickness h (m)	0.450		
LOAD	Span Length L(m)	8.000		

B1. DEAD LOAD CALCULATIONS					
	Self-weight of Slab		10.800		
Uniform Load per meter of Girder (KN/m)	Barrier Rail		2.708		
	Asphalt Overlay	0.943			
	To	14.450			
Doadlaad	Moment (KN-m/m)	M _{DL}	115.60		
	Shear (KN)	V _{DL}	57.80		

B2. LIVE-LOAD CALCULATIONS						
LIVE-LOAD Type	MS18(HS20)					
Number of live load wheel line	0.589	INPUT FOR LIVE LOAD				
Impact factor	0.300					
span	8.000					
Max MS18 moment for 8 00m spar	whoolling	without Impact	ML	154.84		
		with Impact	M _{LL}	118.46		
Max.MS18 shear at a distance "d"		without Impact	VL	105.59		
from the support/wheel line		with Impact	V _{LL}	80.78		

C. LOAD RATING BY LOAD FACTOR METHOD (LFM)

Total area of Rebar			
Nos of Rebar 10			
Dia. (mm)	28		
As(mm2)	6158		
yb (mm)	61		

C1. CAPACITY CALCULATIONS

C1. INPUT				
(1) Common Inpu	t Data			
	Concrete	Allowable Stress	fc	6.9
Material Properties	CONCIERE	Strength	f'c	17.2
(Mpa)	Pobar	Allowable Stress	fs	137.9
	Kebul	Strength	fy	275.8
(2) Input Data for	Moment (Capacity		
Total Area of Steel As(mm ²) 10 x (28mm rebar)			6158	
Section Loss (%)				10
Total Assumed Area of Steel As(mm2)				5542
Centroid of rebars from bottom of deck , d (mm)				61
Centroid of rebars from top of deck , d (mm)			389	
Effective width of deck , b _{eff} (mm)			1000	
Ultimate capacity fac	tor (Uf)			0.90

C1. MOMENT CAPACITY AT MIDSPAN			
Rectangular stress block depth a (mm)	105.0		
The Moment Capacity Mu (kN-m)	462.9		

C2. LOAD RATING CALCULATIONS

C2.1 INPUT					
Load factor for dead load		1.3			
Inventory		2.17			
	Operating	1.3			
Moment Ultimate Capacity at Mi	462.92				
Dead Load Moment at Midspan	115.60				
Live Load Moment at Midspan (kl	118.46				
Rating Live Load (Tons)	33.0				

D. LOAD POSTING BY LOAD FACTOR METHOD (LFM)

D1. DEMAND FORCES FOR LOAD POSTING VEHICLES

D1.1 DEMAND FORCES FOR LOAD POSTING VEHICLES				
(1) POSTING VEHICLE Type	1-1			
LIVE-LOAD Type	Type1-1			
Number of live load wheel line	0.589			
Impact factor	0.300			
span	8.00			
Type 1.1 memory for 8.00m span	(whool line	without Impact	ML	133.60
		with Impact	M _{LL}	102.21
Type 1-1 shear at a distance "d"		without Impact	VL	74.60
from the support/wheel line		with Impact	V _{LL}	57.07
(2) POSTING VEHICLE Type	1-2			
LIVE-LOAD Type	Type1-2			
Type 1.2 memory for 8.00m span	(whool line	without Impact	ML	153.79
Type 1-2 moment for 8.00m spart /	WIEEIIIIE	with Impact	M _{LL}	117.66
Type 1-2 shear at a distance "d"		without Impact	VL	94.94
from the support/wheel line		with Impact	V _{LL}	72.64
(3) POSTING VEHICLE Type	12-2			
LIVE-LOAD Type	Type12-2			
Type 12.2 memory for 8.00m (p.g.)	wheelling	without Impact	ML	144.93
		with Impact	M _{LL}	110.88
Type 12-2 shear at a distance "d"		without Impact	VL	85.28
from the support/wheel line		with Impact	V _{LL}	65.24

D2. POSTING RATING CALCULATIONS

D2.1 INPUT					
Load factor for dead load			1.3		
Load factor for live load	Inve	entory	2.17		
	Ope	rating	1.3		
			Moment		
Moment Ultimate Capacity			462.92		
Dead Load			115.60		
			Moment	Vehicle Weight	
M\$18			118.46	33.0	
Live Load Moment at Midspan (kN-m) Type 1-1			102.21	17.0	
Live Load Shear at Support (KN)		Type 1-2	117.66	27.0	
		Type 12-2	110.88	38.0	

	D2.2 LOAD POSTING RATING FACTOR CALCULATIONS BY LFM						
Vehicle Vehicle Weight		Inventory Rating		Operating Rating		Posting (Metric	
		Moment		Moment			
.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Tons)	RF	LR	RF	LR	Tons)	
MS18	33.0	1.22	40.1	2.03	67.0	33	
Type 1-1	17.0	1.41	24.0	2.35	40.0	17	
Type 1-2	27.0	1.22	33.1	2.04	55.2	27	
Type 12-2	38.0	1.30	49.4	2.17	82.4	38	

E. Load Rating by Allowable Stress Method

E1. MOMENT AND SHEAR CAPACITY CALCULATIONS

E1.1 Input				
Year Built				1958
		fc	Inventory	6.9
	Concrete		Operating	10.3
Material Properties		f	'c	17.2
	Pobar	fc	Inventory	137.9
	Kebui	15	Operating	193.1
Total Assumed Area of Steel As(mm ²)				
Centroid of rebars from top of deck , d (mm)				
Effective width of deck	, beff (mm)			1000
Rebar Ratio ρ = As / (beff x d)				
Modular Ratio of Elasticity n = Es / Ec				
$k = \sqrt{[2\rho n + (\rho n)^2]} - \rho n$				
kd				170.5
j				
jd				332.2

E1.2 MOMENT CAPACITY CALCULATIONS				
	Capacity by concrete	Inventory	195.37	
Moment (kN-m)	allowable stress	Operating	291.65	
	Capacity by rebar allowable stress	Inventory	253.87	
		Operating	355.49	

E2. LOAD RATING CALCULATIONS

E2.1 INPUT					
Load factor for dead load		1.0			
Load factor for live load		1.0			
Inventory		195.37			
Moment Capacity at Midspart (kin-in)	Operating	291.65			
Dead Load Moment at Midspan (kN-m)					
Live Load Moment at Midspan (kN-m)					
Rating Live Load (Tons)		33.0			

E2.2. RATING FACTOR CALCULATIONS (ASM)				Load Rating
Dating Easter and Load Dating	Momont (Midspan)	Inventory Rating	0.67	22.11
Kaling raciol and toda kaling	Momeni (Midspan)	Operating Rating	1.49	49.17

F. LOAD POSTING BY ALLOWABLE STRESS METHOD

F1. INPUT					
Load factor for dead load		1.0			
Load factor for live load		1.0			
		Moment			
Moment Canacity	Inventory	195.37			
Moment Capacity	Operating	291.65			
Dead Load		115.60			
		Moment	Vehicle Weight		
	MS18	118.46	33.0		
Live Load Moment at Midspan (kN-m)	Type 1-1	102.21	17.0		
Live Load Shear at Support (KN)	Type 1-2	117.66	27.0		
	Туре 12-2	110.88	38.0		

F2. LOAD POSTING RATING FACTOR CALCULATIONS (ASM)										
Vehicle Type	Vehicle Weight (Metric Tons)	Moment								
		Invento	ory Rating	Operatir	(Metric					
		RF	LR	RF	LR	Tons)				
MS18	33.0	0.67	22.2	1.49	49.0	22				
Type 1-1	17.0	0.78	13.3	1.72	29.3	13				
Type 1-2	27.0	0.68	18.3	1.50	40.4	18				
Type 12-2	38.0	0.72	27.3	1.59	60.3	27				

G. SUMMARY OF LOAD POSTING

SUMMARY OF RESULTS FOR LOAD POSTING										
Vehicle Type	Vehicle	Allowable S	Stress (ASM)	Load Fac	Load					
	Weight (Metric Tons)	Rating Factor	Load Rating	Rating Factor	Load Rating	Posting (Tons)				
MS18	33.0	0.67	22.2	1.22	40.1	22T				
Type 1-1	17.0	0.78	13.3	1.41	24.0	13T				
Type 1-2	27.0	0.68	18.3	1.22	33.1	18T				
Type 12-2	38.0	0.72	27.3	1.30	49.4	27T				

BACK TO GENERAL

í.		DEPARTMENT OF PU	BLIC WORKS AN	d highwa	YS	BRIDGE ID	:	****	PAGE	:	
×.	V	LOAD RATIN	G CALCL	ILATIC	NS	BRIDGE NAME	:	RCFS SIN	IPLE		
										NOTES	
Б. D	EIVIA	ND FORCES									
B.1	DEAD	OAD CALCULATIONS									
	The de (2) Bar	ad loads considered in the ier rails (Assumed to be ec	e calculations in Jually distributed	clude (1) F among g	ilat Slab se irders) anc	elf-weight, 1 (3) Wearing co	ourse				
•	Self-we	eight of girder = (8.54	.0m) (0.450m)	(24 KN/m ³)) / (8.540m)	=	10.800	KN/m		
	Wearir	rall = (18.5 la course = (0.0	m/8.540m)(1.250 5m) (7.320m)	י) (22 KN/m ³⁻			=	2.708 0.943	KN/m		
		Total	Uniform Load of	Interior G	irder, w		=	14.450	KN/m		
٠	Dead	.oad Moment at Midspan,	M _{DL} = 1	4.45 x	8.00 ²	/8	=	115.60	KN-m	$M_d = wL^2/8$	
•	Dead	Load Shear at "d" from, V_D	L = 8.00	x 14.45	/2		=	57.80	KN	$V_d = wL/2$	
	suppo	211	W _{DL}	= 14.43	5						
		•	8.00	m							
B.2	LIVE LO	OAD CALCULATIONS									
	The co the de	rriageway width is 7.32m c ck shall carry two-lanes.	urb to curb. AAS	SHTO spec	ifies a clea	r lane width of	5.4m,	thus		Manual 1st Ed. Sect 3.4.2	
	The dis	tribution of wheel loads fo	r two traffic lane	s for Slab s	shall be ta	ken as follows				AASHTO Table 3.24.3.2	
	•	Number of live load whee (4+0.06S)<7 ==> S S>15.24m ==> (4	line = <50 in ft. (S<50*0. .+0.06S) should b	(1.0/0.3 3048=15.2 be applied	8048)/(4+0. 4m) 7 in ft.	06*8.0/0.3048)	=	0.589		((4+0.06S) in ft.) 1ft.=0.3048m	
	•	Impact factor, I = 1	5.24 / (8.00	+ 38.00) ==:	> Use Impact	= t =	0.331 0.300		DPWH Sect. 3.2.5.1	
	The live load moments and shear values are taken from the tables in Appendix III on this manual and are used to determine the live load demand. Interpolation may be used if values are not exact										
	•	Max. M\$18 moment for span without impact/whe	8.00 m I line				=	154.84	KN-m		
	•	Thus, MS18 moment with Impact at midspan	M _{LL} =	(0.589)	(1.300)	(154.84)	=	118.56	KN-m		
	•	Max. M\$18 shear at suppo	rt/wheel line				=	105.59	KN		
	•	Thus, MS18 shear	V _{LL} =	(0.589)	(1.300)	(105.59)	=	80.85	KN		
PATED	BY ·			CL				DATE ·			
NAILU	, IU	DAIL .		СП		•		UNIL .			

1		DEPARTMENT OF PUBLIC WORKS AND HIGHWAYS				BRIDGE ID	BRIDGE ID : **** PAGE :				
-V	<u> </u>	OAD RA	TING CA	LCUL	ATION	S BRIDGE NAME	: RCFS SIMPLE				
			10					NOTES			
C.2	LOAD RATING CALCULATIONS										
	The manual provides the rating factor to be calculated using the Load Factor Method (LFM) by the formula:										
	$RF = \frac{\oint Rn - \gamma_D D}{\gamma_L L (1 + I)}$ where: => $\gamma_L = 2.17$ (Inventory) => $\gamma_L = 1.30$ (Operating) => $\gamma_L = 2.17$ (Posting)										
	By substituting of the interior	g the factors a girder can be	nd the load eff estimated as p	ects to th presented	e equatior I below.	n, the moment and st	near rating				
			RATING FA	CTOR CAL		S (LFM)					
		LOCATION	DESCRIPTION	1/0/							
		Midspan	Moment	462.9	2 - 1.: 2.17 (1 OPER/	$\frac{30}{18.46} = 1.$	22				
		i i i dop di i	memeri	462.9	92 - 1.3 1.3 (1	$\frac{30 (115.6)}{18.46)} = 2.$	03				
╎┌						(LFM)					
			(Rating Live Lo	ad = MS1	8, W = 33 N	Netric Tons)					
	Location	Description	n Inventor	y Rating (Tons)	Operatii	ng Rating (Tons)	This Manual			
	Midspan Moment 1.22 x 33 = 40.26 2.03 x 33 = 66.99										
D. L	Since the Inventory Rating M _{LR} = 40.26 metric tons are over than the total weight of MS18 truck = 33 metric tons, load posting the bridge is not necessary However, as a reference, Load Posting Calculation is shown in following pages. D. LOAD POSTING BY LOAD FACTOR METHOD (LFM) The procedure for load posting is similar to the above using load posting vehicles for live load.										
D.1	DEMAND FOR	CES FOR LOAD	POSTING VEHI	CLES							
	The live load moments and shears can be taken from Appendix III of the Manual correspondingThis manualto Types 1-1, 1-2 and 12-2 Posting Vehicles.Fig. 3.4-2										
						<u> </u>					
	Vehicle LL Effects/Wheel Line LL Dist Impact LL Demand										
	iype	moment	snear	Factor		Moment (KN-M)	Snear (KN)				
	Type 1-1	133.60	74.60	0.589	1.300	102.30	57.12				
	Type 1-2	153.79	94.94	0.589	1.300	117.76	/2.70				
	Туре 12-2	144.93	85.28	0.589	1.300	110.97	65.30				
RATED	BY :	DA	ſE :		CHECK	(ED BY :	DATE :	•			

	DEF	DEPARTMENT OF PUBLIC WORKS AND HIGHWAYS					BRIDGE ID : **** PAGE :				
	LO		TING CA	ALCULA	TIONS	BRIDGE NAME : RCFS SIMPLE					
									NOTES		
Sin	nilar calculatio	ns are don	e using Eqs. 3	.2-4 and 3.1-5	for rating facto	or and load ro	ating				
	LOAD POSTING RATING FACTOR CALCULATIONS BY LFM										
	Vehicle Type	Weight (Metric Tons)	Mor RF	nent LR	Mon RF	nent LR	(Metric Tons)				
	M\$18	33.0	1.22	40.1	2.03	67.0	33				
	Type 1-1	17.0	1.41	24.0	2.35	40.0	17				
	Type 1-2	27.0	1.22	33.1	2.04	55.2	27				
	Type 12-2	38.0	1.30	49.4	2.17	82.4	38				
Wł	Concrete : $f_c = 6.9 \text{ Mpa}$ Rebar : $f_s = 137.9 \text{ Mpa}$ <== Inventory $f_s = 193.1 \text{ Mpa}$ <== Operating When the neutral axis is within the slab, the rectangular beam formulation can be used f_c $kd/3 \text{ or } "z"$ As = 5,542 mm ² d = 389 mm $b_{ef} = 1,000 \text{ mm}$										
	$f_{s/n} \rightarrow T \qquad p = As / Bd = 0.01425$ $n = Es / Ec = 12$										
As	sume neutral a	xis (N.A.) is	within slab ar	nd solving for t	he neutral axis	position					
	$k = \sqrt{2\rho n + (\rho n)^2} - \rho n$										
	$= \sqrt{2(0.01425)(12) + [0.01425((12)]^2 - (0.01425)(12))}$										
	k = 0.4383										
	kd = (0.4383)(389) = 170.5 mm										
	j =	1 - k/3 = C	0.8539								
RATED BY	:	DA	ſE :		CHECKED BY	:	DATE :				

RAI

DEPARTMENT OF PUBLIC WORKS AND HIGHWAYS	BRIDGE ID	:	**** PAGE :	
LOAD RATING CALCULATIONS	BRIDGE NAME	:	RCFS SIMPLE	
				NOTES

F. LOAD POSTING BY ALLOWABLE STRESS METHOD

The procedure for load posting is similar to the above using load posting vehicles for live load and the demand moments and shears as calculated in the previous Section D, as follows:

Vehicle	LL Demand		
Туре	Moment (KN-m)		
Type 1-1	102.21		
Type 1-2	117.66		
Туре 12-2	110.88		

Similarly, using Eq. 3.2-1 and Eq. 3.1-5, load posting calculations are presented below

LOAD POSTING RATING FACTOR CALCULATIONS BY ASM								
Vehicle Type	Vehicle Weight (Metric Tons)	INVENTOF Rating Factor	RY RATING Load Rating	OPERATIN Rating Factor	G RATING Load Rating	POSTING (Metric Tons)		
M\$18	33.0	0.67	22.2	1.49	49.0	22		
Type 1-1	17.0	0.78	13.3	1.72	29.3	13		
Type 1-2	27.0	0.68	18.3	1.50	40.4	18		
Type 12-2	38.0	0.72	27.3	1.59	60.3	27		

The summary of calculation results for both the load factor and the allowable stress methods are presented below.

	Vehicle	Allowable	Stress (ASM)	Load Fac	ctor (LFM)	POSTING	
Vehicle Type	Weight (Metric Tons)	Rating Factor	Load Rating	Rating Factor	Load Rating	(Metric Tons)	
M\$18	33.0	0.67	22.2	1.22	40.1	22	
Type 1-1	17.0	0.78	13.3	1.41	24.0	13	
Type 1-2	27.0	0.68	18.3	1.22	33.1	18	
Type 12-2	38.0	0.72	27.3	1.30	49.4	27	
				D T 13T 18T 27T			

RCFS CONTINUOUS

A. GENERAL

BACK TO MENU

A1. BRIDGE DESCRIPTION									
Bridge Loc	cation	REGION	VII						
Bridge Name									
Bridge	Simple or Cor	ntinuous	С						
Туре	Number of Sp	an	3						
Bridge of \	Width (curb to	curb) (m)	7.32						
Number o	f Lanes		2						
Bridge Ler	ngth (m)		8.000	8.000	8.000			=24.000m	
Year Built		1982							
Structure	Superstructure	Э	Reinforced Concrete Slab						
311001010	Substructure		Wall Type F	ype RC Piers and RC Cantilever Abutments					
Wearing	thickness (mm	า)	50						
Course	material		Asphalt						
Matorial P	roportion		fc=	8.3	Мра	fs=	137.9	Мра	
Muteriuri	ropenies		f'c=	20.7	Мра	fy=	275.8	Мра	
			Weight of I	Weight of barrier rail Wbr =		18.5	KN/m		
Assumptio	n		Concrete	Unit Weight	Wu =	24.0	KN/m ³		
			Asphalt Un	it Weight W	/a =	22.0	KN/m ³		
Others			Rating Live	e Load is AA	SHTO MS18	(HS20-44)			

Matorial	Year of	foorfu	fc or fs				
Marchar	Construction	I C OF TY	Inventory	Operating	Posting		
Concrete	Prior to 1959	17.2	6.9	10.3	6.9		
	after 1959	20.7	8.3	13.1	8.3		
	1977 to 1981	27.6	11.0	16.5	11.0	*pc	
	after 1981	31.0	12.4	18.6	12.4	*pc	
Rebar	Prior to 1954	227.5	124.1	172.4	124.1		
	after 1954	275.8	137.9	193.1	137.9		
	Grade 50	344.7	137.9	224.1	137.9	*pc	
	Grade 60	413.7	165.5	248.2	165.5	*pc	

A2. BRIDGE LAYOUT AND DIMENSION

DECK SECTION

Bridge Layout and Dimension				
Overall width (m)	9.540			
Carriageway Width (m)	7.320			
Slab width bw(m)	8.540			
Slab thickness h (m)	0.450			
Span Length L(m)	8.000			

B. DEMAND FORCES

BO. INPUT					
FOR	Slab width bw(m)	8.540			
DEAD	Slab thickness h (m)	0.450			
LOAD	Span Length L(m)	8.000			

B1. DEAD LOAD CALCULATIONS					
Uniform Load per meter of Girder (KN/m)	Self-weight of Slab		10.800		
	Barrier Rail		2.708		
	Asphalt Overlay	0.943			
	To	14.450			
Doadlaad	Moment (KN-m/m)	M _{DL}	115.60		
	Shear (KN)	V _{DL}	57.80		

B2. LOAD DEMAND MIDSPAN AND SUPPORT OF RCS							
Conducting a Structural Analysis, the load demands for the RCS should be							
obtained separately and	obtained separately and input the necessary load demands in the Table below.						
LIVE-LOAD Type MS18(HS20)							
Number of live load wheel line	0.589	INPUT FOR LIVE LOAD					
Impact factor	0.300						
span	8.000						
Description			At Midspan	At Pier Support			
Dead load moments, KN-m			115.60	-66.30			
Additional Dead load moments, KN-m			7.65	-7.45			
M\$18 max. positive moment, KN-r	m		152.50	-			
M\$18 max. negative moment, KN	I-m		-	-109.10			

C. LOAD RATING BY LOAD FACTOR METHOD (LFM)

Total area of Rebar					
Midspan At Pier					
Nos of Rebar	10	6.7			
Dia. (mm)	28	28			
As(mm2)	6158	4126			
yb (mm)	61	64			

REINFORCEMENT C1. CAPACITY CALCULATIONS

C1. INPUT						
(1) Common Inpu	(1) Common Input Data					
	Concroto	Allowable Stress	fc	8.3	3	
Material Properties	Conciele	Strength	f'c	20.	7	
(Mpa)	Pobar	Allowable Stress	fs	137	.9	
	Kebul	Strength	fy	275	.8	
(2) Input Data for	At Midspan	At Pier				
Total Area of Steel As(mm ²) 10 x (28mm rebar)		6158	4126			
Section Loss (%)				0	0	
Total Assumed Area o	f Steel As(m	m2)		6158	4126	
Centroid of rebars fro	61	64				
Centroid of rebars fro	389	386				
Effective width of dec	1000	1000				
Ultimate capacity fac	tor (Uf)			0.90	0.90	

C1. MOMENT CAPACITY AT MIDSPAN	At Midspan	At Pier
Rectangular stress block depth a (mm)	97.0	65.0
The Moment Capacity Mu (kN-m)	520.4	362.0

C2. LOAD RATING CALCULATIONS

C2.1	At Midspan	At Pier	
Load factor for dead load	1.3		
Load factor for live load	Inventory	2.17	
	Operating	1.3	
Moment Ultimate Capacity at M	520.43	-362.00	
Dead Load Moment at Midspar	123.25	-73.75	
Live Load Moment at Midspan (152.50	-109.10	
Rating Live Load (Tons)	33.0	33.0	

C2.2 CALCULATIONS OF RATING FACTOR AND LOAD RATING					Load
					Rating
Rating Factor and Load Rating	Moment	Midspan -	Inventory Rating	1.09	35.97
			Operating Rating	1.82	60.06
		At Pier	Inventory Rating	1.12	36.96
			Operating Rating	1.88	62.04

D. LOAD POSTING BY LOAD FACTOR METHOD (LFM)

D1. DEMAND FORCES FOR LOAD POSTING VEHICLES

D1.2 POSTING VEHICLE DEMAND FORCES						
Conducting a Structural Analysis, the load demands for the RCS should be obtained separately and input the necessary load demands in the Table below.						
Posting Vehicle Demand Forces At Midspan At Pier Suppor						
T 1 1	Moment	105.2	-83.9			
туре т-т	Shear	-	-23.1			
	Moment	137.7	-109.2			
Type 1-2	Shear	-	-31.2			
Туре 12-2	Moment	142.8	-115.9			
	Shear	-	-30.4			

NEXT

RCFS CONTINUOUS

D2. POSTING RATING CALCULATIONS

D2.1 INPUT							
Load factor for dead load			1	.3			
Load factor for live load	Inve	entory	2.	17			
	Ope	rating	1.3				
			Midspan	At Pier			
Moment Ultimate Capacity	520.43	362.00					
Dead Load			123.25	-73.75			
	Midspan	At Pier	Vehicle Weight				
		MS18	152.50	-109.10	33.0		
Live Load Moment at Midspa	Type 1-1	105.20	-83.90	17.0			
Live Load Shear at Support (K	Type 1-2	137.70	-109.20	27.0			
	Type 12-2	142.80	-115.90	38.0			

	D2.2 LOAD POSTING RATING FACTOR CALCULATIONS BY LFM								
V	Vehicle Invento		ry Rating	Operating Rating		Posting			
Vehicle Type	Weight (Metric	Mor	ment	Mor	nent	(Metric			
1760	Tons)	RF	LR	RF	LR	Tons)			
(1) AT N	IIDSPAN								
M\$18	33.0	1.09	35.9	1.82	60.0	33			
Type 1-1	17.0	1.58	26.8	2.63	44.8	17			
Type 1-2	27.0	1.21	32.5	2.01	54.3	27			
Type 12-2	38.0	1.16	44.2	1.94	73.7	38			
(2) AT P	IER								
M\$18	33.0	1.12	37.1	1.88	61.9	33			
Type 1-1	17.0	1.46	24.8	2.44	41.5	17			
Type 1-2	27.0	1.12	30.3	1.87	50.6	27			
Type 12-2	38.0	1.06	40.2	1.77	67.1	38			

E. Load Rating by Allowable Stress Method

E1. MOMENT AND SHEAR CAPACITY CALCULATIONS

E1.1 Input					At Midspan	At Pier	
Year Built					198	1982	
			fc	Inventory	8.	3	
	Conc	crete		Operating	13	.1	
Material Properties			f	'c	20	.7	
	Pok	oar	fc	Inventory	137	'.9	
	Rebar		15	Operating	193.1		
Total Assumed Area of Steel As(mm 8 x (28mm rebar)					6158	4126	
Centroid of rebars from top of deck , d (mm)					389	386	
Effective width of deck	, beff (mm)				1000	1000	
Rebar Ratio ρ = As / (beff x d)					0.01583	0.01069	
Modular Ratio of Elasticity n = Es / Ec					12	12	
$k = \sqrt{[2\rho n + (\rho n)^2]} - \rho n$					0.4550	0.3942	
kd				177.0	152.2		
j					0.8483	0.8686	
jd					330.0	335.3	

E1.2 MOME	At Midspan	At Pier		
Moment (kN-m)	Capacity by concrete	Inventory	242.40	211.72
	allowable stress	Operating	382.59	334.16
		Inventory	280.21	190.74
		Operating	392.38	267.10

E2. LOAD RATING CALCULATIONS

E2.1 INPUT			At Pier	
Load factor for dead load	1.0			
Load factor for live load			0	
Moment Canacity at Midshan (k) m)	Inventory	242.40	190.74	
Moment Capacity of Midsport (kin-in)	Operating	382.59	267.10	
Dead Load Moment at Midspan (kN-m)	123.25	-73.75		
Live Load Moment at Midspan (kN-m)	152.50	-109.10		
Rating Live Load (Tons)			33.0	

				Rating	Load
EZ.Z. RATING FACTOR CALCULATIONS (ASIVI)					Rating
Rating Factor and Load Rating	Moment ()	Midspan	Inventory Rating	0.78	25.74
			Operating Rating	1.70	56.10
		At Pier	Inventory Rating	1.07	35.31
			Operating Rating	1.77	58.41

F. LOAD POSTING BY ALLOWABLE STRESS METHOD

F1. INPUT							
Load factor for dead load		1	.0				
Load factor for live load		1	.0				
		Mor	nent				
		Midspan	At Pier				
Moment Canacity	Inventory	242.40	-190.74				
Moment Capacity	Operating	382.59	-267.10				
Dead Load		123.25	-73.75				
		Moment		Vehicle			
		Midspan	At Pier	Weight			
	MS18	152.50	-109.10	33.0			
Live Load Moment at Midspan (kN-m) Live Load Shear at Support (KN)	Type 1-1	105.20	-83.90	17.0			
	Type 1-2	137.70	-109.20	27.0			
	Туре 12-2	142.80	-115.90	38.0			

	F2. LOAD POSTING RATING FACTOR CALCULATIONS (ASM)									
	Vehicle		Mom	ent		Postina				
Vehicle Type	Weight (Metric	Invento	ory Rating	Operatir	ng Rating	(Metric				
. , 12 -	Tons)	RF	LR	RF	LR	Tons)				
(1) AT N	(1) AT MIDSPAN									
MS18	33.0	0.78	25.8	1.70	56.1	26				
Type 1-1	17.0	1.13	19.3	2.47	41.9	17				
Type 1-2	27.0	0.87	23.4	1.88	50.9	23				
Type 12-2	38.0	0.83	31.7	1.82	69.0	32				
(2) AT P	IER									
MS18	33.0	1.07	35.4	1.77	58.5	33				
Type 1-1	17.0	1.39	23.7	2.30	39.2	17				
Type 1-2	27.0	1.07	28.9	1.77	47.8	27				
Type 12-2	38.0	1.01	38.4	1.67	63.4	38				

SUMMARY OF RESULTS FOR LOAD POSTING						
	Vehicle	Allowable S	Stress (ASM)	Load Fac	ctor (LFM)	load
Vehicle Type	Weight (Metric Tons)	Rating Factor	Load Rating	Rating Factor	Load Rating	Posting (Tons)
M\$18	33.0	0.78	25.8	1.09	35.9	26T
Type 1-1	17.0	1.13	19.3	1.46	24.8	17T
Type 1-2	27.0	0.87	23.4	1.12	30.3	23T
Type 12-2	38.0	0.83	31.7	1.06	40.2	32T

G. SUMMARY OF RESULTS FOR LOAD POSTING

BACK TO GENERAL

K		DEPARTME	ENT OF PUBLIC WO	RKS AND HIGHWAYS	BRIDGE ID	:	****	PAGE	:
X		LOAD F	RATING CA	ALCULATIONS	BRIDGE NAME	:	RCFS CO	NTINUC	DUS
									NOTES
B. D	EMAN	ND FORCES							
. 1									
). I	DEAD L	OAD CALCULAIR	JNS						
	The dea (2) Barri	ad loads conside ier rails (Assumed	ered in the calculc I to be equally dist	rtions include (1) Flat Slab s tributed among girders) ar	self-weight, nd (3) Wearing co	ourse.			
•	Self-we	ight of girder	= (8.540m) (0	450m) (24 KN/m ³) / (8.540)	m)	=	10.800	KN/m	
٠	Barrier r	ail	= (18.5m/8.540r	m)(1.250)		=	2.708	KN/m	
•	Wearing	g course	= (0.05m) (7.	320m) (22 KN/m ³)		=	0.943	KN/m	
			Iotal Unitorm	Load of Interior Girder, w		=	14.450	KN/m	
•	Dead L	oad Moment at	Midspan, M _{DL}	= 14.45 x 8.00 ²	/8	=	115.60	KN-m	$M_d = wL^2/8$
•	Dead L suppo	oad Shear at "d' rt	' from, V_{DL} =	8.00 x 14.45 /2		=	57.80	KN	$V_d = wL/2$
				W _{DL} = 14.45					
				8.00 m					
		•			\				
12			MS						
			15						
	The car	riageway width i	is 7.32m curb to cu	urb. AASHTO specifies a cle	ear lane width of	5.4m,	thus		Manual 1st Ed.
	the dec	ck shall carry two	o-lanes.						Sect 3.4.2
	The dist	ribution of wheel	l loads for two traf	fic lanes for Slab shall be t	aken as follows				AASHTO
									Table 3.24.3.2
	•	Number of live lo (4+0.06S)<7	ad wheel line ==> S<50 in ft. (= (1.0/0.3048)/(4+ (\$<50*0.3048=15.24m)	0.06*8.0/0.3048)	=	0.589		((4+0.06S) in ft.) 1ft.=0.3048m
		S>15.24m	==> (4+0.06S) s	hould be applied 7 in ft.					
	•	mpact factor. I	= 15.24 /	(8.00 + 38.00)		=	0.331		DPWH
		,		. =	=> Use Impact	=	0.300		Sect. 3.2.5.1
	Condu	cting a Structural	I Analysis, the load	demands for the RCFS Co	ontinuous should	be ol	otained		
	sebara.	iery and input the	e necessary load (uemanas in ine Table Dela	JW.				
		- · · ·		At Midspan	At Pie	r Sup	port		
		Descripti	on	0.4L		1.0L			
	Dead I	oad moments, K	N-m	115.60		66.30			
	Additio	onal Dead load n	noments, KN-m	7.65		7.45		-	
	MS18 n	nax, positive mor	oment. KN-m	152.50	_1	- 09.10)	-	
	10101				-1	57.10		L	
							D 4 TE		
AIED)BY :		DAIE :	CHECKED B	Y :		DAIE :		

COAD I The prod DEMANI The live correspond For 3-spond Similar controls Veh	POSTIN acedure for a load more bonding to boan contin Vehici Type Type calculatio	IG BY LC r load postir FOR LOAD F ments and sh Types 1-1, 1 uous (3@15. e Type a 1-1 a 1-2 12-2 IS are done LOAD PC Vehicle	DAD FAC ng is similar t POSTING VEH hears can be -2 and 12-2 0m) bridge, 0m) bridge, 0m) bridge, 0m) bridge, 0m bridg	CTOR MET to the above u HICLES e separately t Posting Vehicl the Posting Liv LL Demand	rHOD (LFN using load post taken from cor les. ve Load dema	 A) ing vehicles for the second second	At Pier Sup -83.9 -23.1 -109.2 -31.2 -115.5	sis pport	This manua Fig. 3.4-2
CAD F The proc DEMANI The live correspo For 3-spo For 3-spo Similar c	POSIIN accedure for a FORCES a load more bonding to boan contin Vehicle Type Type calculatio	IG BY LC or load postin FOR LOAD F ments and sh Types 1-1, 1 uous (3@15. e Type e 1-1 e 1-2 12-2 ns are done LOAD PC Vehicle	DAD FAG ng is similar t POSTING VEH nears can be -2 and 12-2 0m) bridge, Moment Shear Moment Shear Using Eqs. 3 DSTING RAT	CIOR MEI to the above u HICLES e separately t Posting Vehicl the Posting Liv LL Demand	raken from cor les. /e Load dema	<pre>//) ing vehicles f nducting a str nds are: /// /// /// /// /// /// /// /// /// /</pre>	At Pier Sup -83.9 -23.1 -109.2 -115.9	sis pport	This manua Fig. 3.4-2
The prod DEMANI The live correspondence For 3-spondence Similar of Veh	incedure for in FORCES in load more bonding to boan contin Vehicl Type Type calculatio	r load postir FOR LOAD F ments and st Types 1-1, 1 uous (3@15. e Type e 1-1 e 1-2 12-2 ns are done LOAD PC	Ang is similar t POSTING VEH hears can be -2 and 12-2 0m) bridge, Moment Shear Moment Shear using Eqs. 3 DSTING RAT	to the above u HICLES e separately t Posting Vehicl the Posting Liv LL Demand 	raken from cor les. ve Load dema	ing vehicles f nducting a str nds are: Midspan 105.2 137.7 142.8 	At Pier Sup -83.9 -23.1 -109.2 -31.2 -115.5	sis pport 2 2	This manua Fig. 3.4-2
The live correspondence of the live correspondence of the live for 3-spondence of the	ID FORCES I load mor bonding to ban contin Vehicl Type Type calculatio	FOR LOAD F ments and sl Types 1-1, 1 uous (3@15. e Type e 1-1 e 1-2 12-2 ns are done LOAD PC	POSTING VEH hears can bi -2 and 12-2 0m) bridge, 0m) bridge, 0m) bridge, 0m) bridge, 0m) bridge, 0m, b	HICLES e separately t Posting Vehicl the Posting Liv LL Demand	raken from cor les. re Load dema	Ing Venicles f nducting a str nds are: t Midspan 105.2 137.7 142.8 	At Pier Sup -83.9 -23.1 -109.2 -31.2 -115.5	pport	This manua Fig. 3.4-2
DEMANIA The live correspond For 3-spond Similar controls Veh	ID FORCES I load more bonding to ban contin Vehicl Type Type calculatio	FOR LOAD F ments and sh Types 1-1, 1 uous (3@15. e Type e 1-1 e 1-2 12-2 ns are done LOAD PC	POSTING VEH hears can be -2 and 12-2 0m) bridge, 0m) bridge, Moment Shear Moment Shear using Eqs. 3 DSTING RAT	HICLES e separately t Posting Vehicl the Posting Liv LL Demand	raken from cor les. /e Load dema	nducting a str nds are: t Midspan 105.2 137.7 142.8 	At Pier Sup -83.9 -23.1 -109.2 -31.2 -115.9	pport	This manua Fig. 3.4-2
The live correspo For 3-spo Similar of Veh	i load mor ponding to pan contin Vehicl Type Type calculatio	ments and si Types 1-1, 1 uous (3@15. e Type e 1-1 e 1-2 12-2 ns are done LOAD PC	Moment Shear Moment Shear Moment Shear using Eqs. 3	e separately t Posting Vehicl the Posting Liv LL Demand 	raken from cor les. /e Load dema	nducting a str nds are: Midspan 105.2 137.7 142.8 	At Pier Sup -83.9 -23.1 -109.2 -31.2 -115.9	pport 2 2	This manua Fig. 3.4-2
The live correspo For 3-spo Similar of Veh	i load mor ponding to pan contin Vehicl Type Type calculatio	ments and st Types 1-1, 1 uous (3@15. e Type e 1-1 e 1-2 12-2 ns are done LOAD PC	Amears can be -2 and 12-2 0m) bridge, Moment Shear Moment Shear Using Eqs. 3 DSTING RAT	e separately t Posting Vehicl the Posting Liv LL Demand 	aken from cor es. ve Load dema	nducting a str nds are: t Midspan 105.2 137.7 142.8 	At Pier Sup -83.9 -23.1 -109.2 -31.2 -115.5	pport 2 2	This manua Fig. 3.4-2
Correspondent For 3-spondent Similar controls Veh	oonding to oan contin Vehicl Type Type calculatio	Types 1-1, 1 uous (3@15. e Type e 1-1 e 1-2 12-2 ns are done LOAD PC	-2 and 12-2 0m) bridge, Moment Shear Moment Shear using Eqs. 3 DSTING RAT	Posting Vehicl the Posting Liv LL Demand	les. ve Load dema At	nds are: Midspan 105.2 137.7 142.8 	At Pier Sup -83.9 -23.1 -109.2 -31.2 -115.9	pport	Fig. 3.4-2
For 3-spo	vehici Vehici Type Type calculatio	uous (3@15. e Type e 1-1 e 1-2 12-2 ns are done LOAD PC	0m) bridge, Moment Shear Moment Shear Using Eqs. 3 DSTING RAT	the Posting Liv	ve Load dema	nds are: Midspan 105.2 137.7 142.8 	At Pier Sup -83.9 -23.1 -109.2 -31.2 -115.9	pport	
Similar c	vehici Vehici Type Type calculatio	uous (3@15. e Type e 1-1 e 1-2 12-2 ns are done LOAD PC	0m) bridge, Moment Shear Moment Shear Using Eqs. 3 DSTING RAT	the Posting Liv	At	nds are: t Midspan 105.2 137.7 142.8 	At Pier Sup -83.9 -23.1 -109.2 -31.2 -115.9	pport	
Similar c	Vehicl Type Type Calculatio	e Type 2 1-1 2 1-2 12-2 Is are done LOAD PC	Moment Shear Moment Shear Moment Shear using Eqs. 3	LL Demand		Midspan 105.2 137.7 142.8 	At Pier Sup -83.9 -23.1 -109.2 -31.2 -115.5	2 2	
Similar c	Type Type Calculatio	 a 1-1 b 1-2 b 1-2 c 12-2 ns are done c LOAD PC vehicle 	Moment Shear Moment Shear Moment Shear Using Eqs. 3	3.2-4 and 3.1-5		105.2 137.7 142.8 	-83.9 -23.1 -109.2 -31.2 -115.9	2	
Similar c	Type Type calculatio	e 1-1 e 1-2 12-2 ns are done LOAD PC	Shear Moment Shear Moment Shear Using Eqs. 3	3.2-4 and 3.1-5		 137.7 142.8 	-23.1 -109.2 -31.2 -115.9	2	
Similar c	Type Type calculatio	e 1-2 12-2 ns are done LOAD PC	Moment Shear Moment Shear using Eqs. 3	3.2-4 and 3.1-5		137.7 142.8 	-109.2 -31.2 -115.9	2	
Similar c	Type Type calculatio	12-2 12-2 ns are done LOAD PC	Shear Moment Shear using Eqs. 3	3.2-4 and 3.1-5		 142.8 	-31.2	? ?	
Similar c Veh	Type calculatio	12-2 ns are done LOAD PC	Moment Shear using Eqs. 3	3.2-4 and 3.1-5		142.8	-115.9	9	
Similar c	icle Type	LOAD PC	Shear using Eqs. 3 DSTING RAT	3.2-4 and 3.1-5			20 1		
Similar c	calculatio	ns are done	using Eqs. 3 DSTING RAT	8.2-4 and 3.1-5			-30.4		
Similar of Veh	calculatio	LOAD PC	using Eqs. 3	3.2-4 and 3.1-5	r 11 r 1				
Veh Ty	nicle Type	LOAD PC	DSTING RAT		tor rating tacto	or and load re	ating		
Veh	nicle Type	Vehicle	DSTING RAT					-	
Veh Ty	nicle Type	Vehicle			CALCULATIO	ONS BY LFM			
Veh Ty	nicle Type	Vehicle				IG RATING	POSTING	-1	
Ту	/1	weight	Mor	ment	Mor	ment	(Metric		
Ty		(Metric Tons)	RF	LR	RF	LR	Tons)		
Ту	M\$18	33.0	1.09	35.9	1.82	60.0	33		
т.	ype 1-1	17.0	1.58	26.8	2.63	44.8	17	1	
IY	ype 1-2	27.0	1.21	32.5	2.01	54.3	27	1	
Тур	pe 12-2	38.0	1.16	44.2	1.94	73.7	38		
				I			I	_	
			STING RAT			NS BY I FM		٦	
		20/10/10		AT PIER SUPP	ORT				
		Vehicle	INVENTO	RY RATING	OPERATIN	IG RATING	POSTING	1	
Veh	nicle Type	Weight	Mor	ment	Mor	ment	(Metric	1	
		(Metric Ions)	RF	LR	RF	LR	Tons)	╡	
	MS18	33.0	1.12	37.1	1.88	61.9	33		
Ту	ype 1-1	17.0	1.46	24.8	2.44	41.5	17	1	
Ту	ype 1-2	27.0	1.12	30.3	1.87	50.6	27		
Ту	pe 12-2	38.0	1.06	40.2	1.77	67.1	38	1	
L		·						_	

AD P	OSTIN	IG BY AI	LOWAB	LE STRESS	METHOD			ŀ	NOTE
ne proc	edure fo	or load posti	ng is similar t	o the above u	using load post	ing vehicles fo	or live load		
na ine	aemana	a moments c	and shears as		i ine previous	section D, ds	ioliows:		
		Vehicle Type	1	Moment (KN-n	n)				
	_	[vpe 1-1	AT MIDS 20		-83 90				
	-	Type 1-2	137 70		-109.20				
	т	vne 12-2	142.80		-115.90				
	_	ype 12-2	142.00	, 	-113.70				
milarly,	using Ec	q. 3.2-1 and I	Eq. 3.1-5, loa	d posting calc	culations are p	resented belc	W		
		LOAD PC	osting rati		CALCULATIO	NS BY ASM			
		Vehicle	INVENTO	RY RATING	OPERATIN	IG RATING	POSTING		
Vehic	cle Type	Weight (Metric Tons)	Rating Factor	Load Rating	Rating Factor	Load Rating	(Metric Tons)		
٨	AS18	33.0	1.03	34.0	1.76	58.2	33		
Тур	oe 1-1	17.0	1.49	25.4	2.56	43.5	17		
Тур	oe 1-2	27.0	1.14	30.8	1.95	52.8	27		
Тур	e 12-2	38.0	1.10	41.8	1.88	71.6	38		
r			STING PAT			NS BY ASM	·		
				AT PIER SUPP	ORT				
Vehic	cle Type	Vehicle Weight	Rating	Load	Rating	Load	Metric		
		(Metric Tons)	Factor	Rating	Factor	Rating	Tons)		
Ν	<i>N</i> S18	33.0	1.07	35.4	1.77	58.5	33		
Тур	oe 1-1	17.0	1.39	23.7	2.30	39.2	17		
Тур	oe 1-2	27.0	1.07	28.9	1.77	47.8	27		
_	e 12-2	38.0	1.01	38.4	1.67	63.4	38		

are presented below.

NOTES

	DEPARTMENT OF PUBLIC WORKS AND HIGHWAYS	BRIDGE ID	:	**** PAGE	:
	LOAD RATING CALCULATIONS	BRIDGE NAME	:	RCFS CONTINUO	US
The sur	nmary of calculation results for both the load factor and the a	llowable stress m	neth	ods	

SUMMARY OF RESULTS FOR LOAD POSTING							
	Vehicle	Allowable	Stress (ASM)	Load Fac	ctor (LFM)	POSTING	
Vehicle Type	Weight (Metric Tons)	Rating Factor	Load Rating	Rating Factor	Load Rating	(Metric Tons)	
MS18	33.0	1.03	34.0	1.09	35.9	33	
Type 1-1	17.0	1.39	23.7	1.46	24.8	17	
Type 1-2	27.0	1.07	28.9	1.12	30.3	27	
Туре 12-2	38.0	1.01	38.4	1.06	40.2	38	

RATED BY :	DATE :	CHECKED BY :	DATE :

EXAMPLE 2

Reinforced Concrete Deck Girder Bridge

Example 2-1: Simple

Example 2-2: Continuous

INTERIOR RCDG SIMPLE

A. GENERAL

BACK TO MENU

			A1. BRID	GE DESCR	IPTION					
Bridge Loo	cation	REGION	XI							
Bridge Name			Sample Br	ample Bridge						
Bridge	Simple or Co	ntinuous	S	Reinforced Concrete T-beams						
Туре	De Number of Span		1							
Bridge of V	Width (curb to	o curb) (m)	7.32							
Number o	f Lanes		2							
Bridge Length (m)			10.400					=10.400m		
Year Built			1987							
Nos. of Girder		4	Multiple monotholic with deck slab.							
Structure	Girder Spacing (m)		2.400	on centers						
	Substructure		Concrete	crete bents and Abutments						
Wearing	thickness (m	m)	50							
Course	material		Asphalt							
Matorial P	roportios		fc=	8.3	Мра	fs=	137.9	Мра		
Mutenui i	lobellies		f'c=	20.7	Мра	fy=	275.8	Мра		
			Weight of	barrier rail	Wbr =	3.6	KN/m			
Assumptio	'n		Concrete	Unit Weigh	t Wu =	24.0	KN/m ³			
			Asphalt Ur	nit Weight V	Va =	22.0	KN/m ³			
Others			Rating Live	e Load is A	ASHTO MS18	3 (HS20-44)				

Matorial	Year of	foorfu		fc or fs	fs			
Material Concrete Rebar	Construction	IC OF IV	Inventory	Operating	Posting			
Concrete	Prior to 1959	17.2	6.9	10.3	6.9			
	after 1959	20.7	8.3	13.1	8.3			
	1977 to 1981	27.6	11.0	16.5	11.0	*pc		
	after 1981	31.0	12.4	18.6	12.4	*pc		
	Prior to 1954	227.5	124.1	172.4	124.1			
Pobar	after 1954	275.8	137.9	193.1	137.9			
Repar	Grade 50	344.7	137.9	224.1	137.9	*pc		
	Grade 60	413.7	165.5	248.2	165.5	*pc		

A2. BRIDGE LAYOUT AND DIMENSION

SUPERSTRUCTURE CROSS SECTION

BRIDGE LAYOUT AND DIMENSION				
Girder width bw(m)	0.400			
Girder Web height h (m)	0.600			
Fillet/Haunch width wf(m)	0.100			
Fillet/Haunch height hf(m)	0.100			
Slab thickness ts (m)	0.180			
Span Length L(m)	10.400			

B. DEMAND FORCES

BO. INPUT						
	Girder width bw(m)	0.400				
	Girder Web height h (m)	0.600				
FOR	Fillet/Haunch width wf(m)	0.100				
DEAD	Fillet/Haunch height hf(m)	0.100				
LOAD	Slab thickness ts (m)	0.180				
	Slab width ws (m)	2.400				
	Span Length L(m)	10.400				

B1. DEAD LOAD CALCULATIONS						
	Self-weight of Girder		5.760			
	Fillet/Haunch	0.240				
Uniform Load per meter of Girder (KN/m)	Slab Weight	Continuous	10.368			
	Barrier Rail	1.800				
	Asphalt Overlay		2.640			
	Tc	otal	20.810			
Deadload	Moment (KN-m/m)	M _{DL}	281.4			
Dedd Lodd	Shear (KN)	V _{DL}	108.2			

B2. LIVE-LOAD CALCULATIONS						
LIVE-LOAD Type	MS18(HS20)					
Number of live load wheel line	1.312	INPUT FOR LIVE LOAD				
Impact factor	0.300					
span	10.400					
Max MS18 moment for 10 40m spar	hubballing	without Impact	ML	236.5		
Max.MS18 moment for 10.40m span / wheel line		with Impact	M _{LL}	403.5		
Max.MS18 shear at a distance "d"		without Impact	VL	117.7		
from the support/wheel line		with Impact	V_{LL}	200.7		

C. LOAD RATING BY LOAD FACTOR METHOD (LFM)

Total area of Rebar				
Nos of Rebar	8			
Dia. (mm)	28			
As(mm2)	4926			
yb (mm)	102			

Stirrups				
Dia. (mm)	12			
As(mm2)	113.1			
Spacing (mm)	200			

C1. CAPACITY CALCULATIONS

C1. INPUT					
(1) Common Inpu	t Data				
	Concrete	Allowable Stress	fc	8.3	
Material Properties	Conciere	Strength	f'c	20.7	
(Mpa)	Rehar	Allowable Stress	fs	137.9	
	Rebui	Strength	fy	275.8	
(2) Input Data for	Moment (Capacity			
Total Area of Steel As	s(mm²)			4926	
Section Loss due to R	ebar Exposu	ure (%)		0	
Total Assumed Area o	of Steel As(I	mm2)		4926	
Centroid of rebars fro	m bottom a	of deck , d (mm)		102	
Centroid of rebars fro	m top of de	eck , d (mm)		678	
		12ts + bw	2560		
Effective width of de	ck , b _{eff} (mr	Span Length /	2600		
beff				2400	
Ultimate capacity fa	0.90				
(3) Input Data for	Shear Ca	pacity			
Girder width bw(mn	n)			400	
Depth of Shear Crack	ks (mm)			199	
The Reduction Factor	r due to She	ar Cracks		0.50	
Centroid of rebars fro	m top of de	eck , d (mm)		678	
Area of rebar Av(mm	י ²)			113.1	
Section Loss due to St	0				
Total Assumed Area c	113.1				
Spacing of stirrups S	200				
Ultimate capacity factor (Uf)				0.85	
C1.1 MOMENT CAPACITY AT MIDSPAN					
Rectangular stress block depth a (mm)					
The Moment Capacit	ty Mu (kN-n	n)			
	C	1.2 SHEAR CAPACITY	Y AT SUP	PORT	

The shear FULL capacity due to concrete section Vc (kN)206.1The shear capacity due to concrete section Vc (kN)103.5The shear FULL capacity due to shear reinforcement Vs (kN)211.5The shear capacity due to Stirrups Vs (kN)211.5The total shear capacity Vu (kN)267.8

32.2 809.3

C2. LOAD RATING CALCULATIONS

C2.1 INPUT				
Load factor for dead load	1.3			
Inventory		2.17		
	Operating	1.3		
Moment Ultimate Capacity at N	809.3			
Dead Load Moment at Midspan	281.4			
Live Load Moment at Midspan (403.5			
Shear Ultimate Capacity at Supp	Shear Ultimate Capacity at Support (KN)			
Dead Load Shear at Support (KN	108.2			
Live Load Shear at Support (KN)	200.7			
Rating Live Load (Tons)		33.0		

C2.2 CALCULATIONS OF F	Rating Factor	Load Rating		
Rating Factor and Load Rating	Mamont (Midshan)	Inventory Rating	0.51	16.7
	Momeni (Miaspan)	Operating Rating	0.85	27.9
	Shoar (At Support)	Inventory Rating	0.29	9.6
		Operating Rating	0.49	16.1

Depend on the minimum value of Rating Factor > 1 or <1 , instruction in the below cell is automatically shown

Load Posting

Click following the above instruction

Return to GENERAL

Load Posting

D. LOAD POSTING BY LOAD FACTOR METHOD (LFM)

D1. DEMAND FORCES FOR LOAD POSTING VEHICLES

D1.1 DEMAN	D1.1 DEMAND FORCES FOR LOAD POSTING VEHICLES					
(1) POSTING VEHICLE Type	1-1					
LIVE-LOAD Type	Type1-1					
Number of live load wheel line	1.312					
Impact factor	0.300					
span	10.40					
Type 1.1 moment for 10.40m span /	wheel line	without Impact	ML	183.0		
		with Impact	M _{LL}	312.1		
Type 1-1 shear at a distance "d"		without Impact	VL	76.7		
from the support/wheel line		with Impact	V _{LL}	130.8		
(2) POSTING VEHICLE Type	1-2					
LIVE-LOAD Type	Type1-2					
Type 1.2 memort for 10.40m span	wheelling	without Impact	ML	223.6		
Type 1-2 moment for 10.40m span /		with Impact	M _{LL}	381.4		
Type 1-2 shear at a distance "d"		without Impact	VL	103.6		
from the support/wheel line		with Impact	V _{LL}	176.7		
(3) POSTING VEHICLE Type	12-2					
LIVE-LOAD Type	Type12-2					
Type 12.2 memory for 10.40m span	wheelling	without Impact	ML	208.6		
rype rz-z momeni tor to.40m span / wheel line		with Impact	M _{LL}	355.8		
Type 12-2 shear at a distance "d"		without Impact	VL	90.1		
from the support/wheel line		with Impact	V _{LL}	153.7		

D2. POSTING RATING CALCULATIONS

D2.1 INPUT							
Load factor for dead load			1.3				
		entory	2.17				
	Ope	erating	1.3				
			Moment	Shear			
Moment Ultimate Capacity	809.3	267.8					
Dead Load			281.4	108.2			
			Moment	Shear	Vehicle Weight		
Live Legel Mensort et Midee		MS18	403.5	200.7	33.0		
Live Load Moment at Midsp m) Live Load Shear at Support /	an (kn-	Type 1-1	312.1	130.8	17.0		
	KN)	Type 1-2	381.4	176.7	27.0		
	NY Y	Type 12-2	355.8	153.7	38.0		

D2.2 LOAD POSTING RATING FACTOR CALCULATIONS BY LFM										
	Vehicle		Inventory Rating			Operating Rating				Postina
Vehicle Type	Weight (Metric	Mor	nent	She	ear	Mor	nent	She	ear	(Metric
)	Tons)	RF	LR	RF	LR	RF	LR	RF	LR	lons)
MS18	33.0	0.51	16.7	0.29	9.6	0.85	27.9	0.49	16.1	10
Type 1-1	17.0	0.65	11.1	0.45	7.6	1.09	18.6	0.75	12.7	8
Type 1-2	27.0	0.54	14.5	0.33	8.9	0.89	24.2	0.55	14.9	9
Type 12-2	38.0	0.57	21.8	0.38	14.5	0.96	36.4	0.64	24.2	14

E. Load Rating by Allowable Stress Method

E1. MOMENT AND SHEAR CAPACITY CALCULATIONS

E1.1 Input						
		fc	Inventory	8.3		
	Concrete		Operating	13.1		
Material Properties		1	'C	20.7		
	Rehar	fs	Inventory	137.9		
	Kebai	15	Operating	193.1		
Total Assumed Area of Steel As(mm ²)				4926		
Area of rebar Av(mm ²)				113.1		
Spacing of stirrups S (m	nm)			200		
Centroid of rebars from top of deck , d (mm)						
Effective width of deck , beff (mm)						
Girder width bw(m)				400		
Rebar Ratio ρ = As / (k	peff x d)			0.00303		
Modular Ratio of Elastic	city n = Es / Ec			12		
$k = \sqrt{[2\rho n + (\rho n)^2]}$	on			0.2357		
j				0.9214		
kd						
Slab thickness ts (mm)						
k						
Z				53.26		
jd				624.74		

Calculation of kd						
n	As	d	b	ts	bw	
12	4926	678	2400	180.0	400	
nAs	nAsd	bts	1/2bts ²	bwy	y/2+ts	
59112	40077936	432000	38880000	0	180.0	
ts+y	Y _{calculate}				y input	
180.0	0.0				0.0	

E1. MOMENT AND SHEAR CAPACITY CALCULATIONS						
	Capacity	lo stross	Inventory	994.18		
Moment (kN-m)	Mc		Operating	1569.13		
	Capacity		Inventory	424.38		
	by rebar allowable stress Ms		Operating	594.26		
	Capacity due to	Vc	Inventory	49.60		
	concrete section	٧C	Operating	74.40		
Shoar (KNI)	Capacity	Vc	Inventory	105.74		
	due to rebar	۷۵	Operating	148.07		
	Shoar capacity	Vu	Inventory	155.34		
	Shear capacity	٧U	Operating	222.47		

E2. LOAD RATING CALCULATIONS

E2.1 INPUT						
Load factor for dead load						
Load factor for live load		1.0				
Inventory						
Moment Capacity at Midspan (kin-in)	Operating	594.3				
Dead Load Moment at Midspan (kN-m)						
Live Load Moment at Midspan (kN-m)						
Shear Carpacity at Support (KNI)						
Shear Capacity at support (KN)	Operating	222.5				
Dead Load Shear at Support (KN)						
Live Load Shear at Support (KN)						
Rating Live Load (Tons)						

E2.2. RATING FAC	Rating Factor	Load Rating		
	Mamont (Midenan)	Inventory Rating	0.35	11.7
Pating Easter and Load Pating	Momeni (Midspun)	Operating Rating	0.78	25.6
kaning raciol and Load kaning	Shoar (At Support)	Inventory Rating	0.23	7.7
	shedi (Al support)	Operating Rating	0.57	18.8

F. LOAD POSTING BY ALLOWABLE STRESS METHOD

F1. INPUT								
Load factor for dead load		1.0						
Load factor for live load		1.0						
		Moment	Shear					
Mamont and Shoar Canacity	Inventory	424.4	155.3					
Moment and shear capacity	Operating	594.3	222.5					
Dead Load	281.4	108.2						
	Moment	Shear	Vehicle Weight					
Live Legel Memoret et Mider en (k)	M\$18	403.5	200.7	33.0				
Live Load Momeni di Midspan (kiv-	Type 1-1	312.1	130.8	17.0				
live Load Shear at Support (KN)	Type 1-2	381.4	176.7	27.0				
	Type 12-2	355.8	153.7	38.0				

F2. LOAD POSTING RATING FACTOR CALCULATIONS (ASM)										
Vehicle Type	Vehicle		Inventory Rating				Operating Rating			
	Weight (Metric Tons)	Mor	nent	She	ar	Mor	nent	Sh	ear	(Metric
		RF	LR	RF	LR	RF	LR	RF	LR	Tons)
MS18	33.0	0.35	11.7	0.23	7.7	0.78	25.6	0.57	18.8	8
Type 1-1	17.0	0.46	7.8	0.36	6.1	1.00	17.0	0.87	14.9	6
Type 1-2	27.0	0.38	10.1	0.27	7.2	0.82	22.2	0.65	17.5	7
Type 12-2	38.0	0.40	15.3	0.31	11.7	0.88	33.4	0.74	28.2	12

G. SUMMARY OF LOAD POSTING

SUMMARY OF RESULTS FOR LOAD POSTING								
Vehicle Type	Vehicle	Allowable S	Stress (ASM)	Load Fac	load			
	Weight (Metric Tons)	Rating Factor	Load Rating	Rating Factor	Load Rating	Posting (Tons)		
MS18	33.0	0.23	7.7	0.29	9.6	8T		
Type 1-1	17.0	0.36	6.1	0.45	7.6	6 T		
Type 1-2	27.0	0.27	7.2	0.33	8.9	7 T		
Type 12-2	38.0	0.31	11.7	0.38	14.5	12T		

END GO TO RC DECK SLAB

1		DEPARTMENT OF PUBLIC WORKS AND HIGHW	AYS BRIDGE ID	:	****	PAGE	:					
-		LOAD RATING CALCULATION	ONS BRIDGE NA	ME :	RCDG SI	MPLE						
							NOTES					
B. D	EMA	ID FORCES										
B.1	DEAD L	DAD CALCULATIONS										
	-		o:									
	The dead loads considered in the calculations include (1) Girder self-weight, (2) Fillet/haunch, (3) Tributary area of slab, (4) Barrier rails (Assumed to be equally distributed amona airders).											
	(5) Wea	ring course.										
Ι.	Self-we	aht of airder = (0,40m) (0,60m) (24,KN/m	³)	=	576	KN/m						
•	Fillet/ho	unch = 2 (1/2) (0.1m) (0.1m) (24 KN/m)	³)	=	0.24	KN/m						
•	Slab We	ight (Tributary) = (0.18m) (2.40m) (24 KN/m	³)	=	10.368	KN/m						
•	Barrier 1	ail = $2(3.6/4)$	31	=	1.80	KN/m						
•	wearin	 course = (0.05m) (2.40m) (22 KN/m) Total Uniform Load of Interior (Girder, w	=	2.64	KN/m KN/m						
•	Dead L	bad Moment at Midspan, M_{DL} = 20.81 x	10.40 ² /8	=	281.4	KN-m	$M_d = wL^2/8$					
•	Dead L	bad Shear at "d" from, V_{DL} = 20.81 x 10.40) /2	=	108.20	KN	$V_d = wL/2$					
	suppo	t W = 20	0 1									
		$W_{DL} = 20.$										
			Δ									
		10.40 m										
		•	\									
B.2	LIVE LO	AD CALCULATIONS										
	The car the dea	iageway width is 7.32m curb to curb. AASHTO spe k shall carry two-lanes	cifies a clear lane width	n of 5.4m,	thus		Manual 1st Ed. Sect 3.4.2					
	The dist	ibution of wheel loads for two traffic lanes for T-be	eams shall be taken as S	8/1.829			DPWH					
	•	Number of live load wheel line = 2.40 /	1.829	=	1.312		AASHTO					
							Table 3.23.1					
							(\$/6 in ff.)					
	•	mpact factor, I = 15.24 / (10.4) + 38.0	00)	=	0.552		DPWH					
			==> Use Imp	oact =	0.300		Sect. 3.2.5.1					
	The live	load moments and shear values are taken from th	ne tables in Appendix III	on this m	anual							
1	and are	used to determine the live load demand. Interpo	lation may be used if v	alues are	not exact	ł						
	•	Max. MS18 moment for (10.4) m		=	236.5	KN-m						
1	:	pan without impact/whel line										
	•	hus, MS18 moment with $M_{LL} = (1.312m)$	(1.300m) (236.50)	=	403.5	KN-m						
1		mpact at midspan										
1	•	/ax. M\$18 shear at support/wheel line		=	117.7	KN						
		· · · · · · · · · · · · · · · · · · ·										
	•	hus, M\$18 shear $V_{LL} = (1.312m)$	(1.300m) (117.70)	=	200.7	KN						
RATED)BY :	DATE : C	HECKED BY :		DATE :							

1		DEPARTMENT OF PUBLIC WORKS AND HIGHWAYS BRIDGE ID : **** PAG				
×		LOAD RA	TING CAL	CULATIONS	BRIDGE NAME : RCDG SI	MPLE
	C12	SHEAR CAPACITY				NOTES
	The AASH the supp In the ab standarc	HTO Design Specific ort. However, shear ssence of data, the Is had been used. The shear capaci	ation requires the r at support may standard reinforce ty of the concret	at the design shear be ta be used conservatively. cement for a 10.0m span e section	ken at a distance "d" from under DPWH	
		Vc = 0.167 S	qrt(f'c) b d = =	0.167 Sqrt (20.70 206.1 KN ==>> Full	0) (400) (678) Capacity	
		Vc' (reduced) =	0.5 x 206.	1 = 103.5 KN ==>	>> Use 50% concrete capacit due to shear cracks (199m)	ty nm depth)
	•	The shear capaci	ty of the shear re	inforcement		
		Vs = 2 Av fy	d _{eff} /S =	2 (113.1) (275.80) 211.5 KN	(678.00) / 200	Stirrups : D12mm A = 113.1 mm ²
	•	The total shear co	apacity becomes	5		
		$V U = \phi (V C$	+ Vs) =	0.85 (103.5 + 2 267.8 KN	11.5)	
C.2	LOAD RA	TING CALCULATION	IS			
	The man by the fc R	ual provides the rate prmula: $F = \frac{\phi Rn - \gamma_D D}{\gamma_L L (1 + I)}$	ling factor to be (calculated using the Loa here: => γ_L = 2. => γ_L = 1. => γ_L = 2.	id Factor Method (LFM) 17 (Inventory) 30 (Operating) 17 (Posting)	This Manual Eq. 3.2-4
	By substit of the int	tuting the factors an erior girder can be	nd the load effec estimated as pre	ats to the equation, the m sented below.	noment and shear rating	
		LOCATION	DESCRIPTION	OR CALCULATIONS (LFM)	ATING	This Manual
		Midspan	Moment	809.3 - 1.30 (2) 2.17 (403.5) OPERATING R 809.3 - 1.30 (2)	$\frac{281.4)}{47100} = 0.51$	Eq. 3.2-4
			DESCRIPTION	1.3 (403.5)		
		At Support	Shear	267.8 - 1.30 (1) 2.17 (200.7) OPERATING R. 267.8 - 1.30 (1)	$\frac{108.2}{108.2} = 0.29$ ATING $\frac{108.2}{108.2} = 0.49$	Eq. 3.2-4
RATED	BY .	<u>ا</u>	TE .		. IDate ·	
L		BA	-	51.261.25 61	D,	

	DEPARTMEN	t of public w	ORKS AND	HIGHWAYS		BRIDGE ID	:		PAGE :	
		ATING C	ALCUL	ATION	IS	BRIDGE N	AME :	RCDG	SIMPLE	
										NOTES
		LOAD R	ATING CAL	CULATIONS	(LFM)				—]	
		(Rating Live	Load = MS	18, W = 33 N	Aetric Tc	ons)				
Location	Descripti	on Invent	ory Rating	(Tons)		Oper	rating Ra	ting (Ton	s) This <i>N</i>	Aanual
miaspan	Momeni	0.51 X	33 =	10.7		0.85	x	= 21	Eq. 5	.1-5
At Support	Shear	0.29 x	33 =	9.6		0.49	x 33	= 16	5.1 This <i>N</i> Eq. 3	Manual .1-5
than the	sting BY	of MS18 truck =	= 33 metric	tons, load p	oosting t	the bridge	is necess	ary		
The proced	lure for load po	osting is similar	to the abo	ve using loo	ad posti	ing vehicle	es for live	load.		
DEMAND F	ORCES FOR LOA	D POSTING VE	HICLES							
The live loc to Types 1-	d moments an , 1-2 and 12-2	d shears can k Posting Vehicl	be taken fro es.	om Appenc	lix III of t	he Manuc	I corresp	onding	This r Fig. 3	nanual 8.4-2
For a 10.	40 m span brid	dge, the Postir	ig Live Loa	d demands	are:					
Vehicle	LL Effects	/Wheel Line	LL Dist	Impact		LL	Demand			
Туре	Moment	Shear	Factor	Impuci	Morr	nent (KN-m	ı) :	Shear (Ki	N)	
Type 1-1	183.0	76.7	1.312	1.300		312.1		130.8		
Type 1-2	223.6	103.6	1.312	1.300		381.4		176.7		
Туре 12-2	208.6	90.1	1.312	1.300		355.8		153.7		
Similar calc	ulations are do	one using Eqs.	3.2-4 and 3	.1-5 for ratir	ng facto	or and load	d rating			
	LOAD POSTING RATING FACTOR CALCULATIONS BY LFM									
	LOAD	Posting RA	TING FAC	TOR CALC	ULATIO	NS BY LFN	1			
	LOAD Vehicle	POSTING RA	TING FAC	IOR CALC	ULATIO PERATIN	ns by lfn g rating	n PO	sting		
Vehicle	LOAD Type Vehicle Weight (Metric Ton	POSTING RA	TING FAC		PERATIN ment	G RATING Shear	И РО (М	STING Ietric		
Vehicle	Vehicle Type Vehicle Weight (Metric Ton 8 33.0	POSTING RA	TING FAC	IOR CALC Mor LR RF 7.6 0.85	PERATIN ment LR 27.9	NS BY LFN G RATING Shear RF L 0.49 16	R T	STING Netric ons) 10		
Vehicle MS	LOAD Type Vehicle Weight (Metric Ton 8 33.0 1-1 17.0	POSTING RA INVENTO Moment s) RF LR 0.51 16.7 0.65 11.1	TING FAC	IOR CALC OF Mor LR P.6 0.85 7.6	PERATIN ment LR 27.9 18.6	NS BY LFN G RATING Shear RF L 0.49 16 0.75 12	PO (M R T 5.1	STING Netric ons) 10 8		
Vehicle MS Type Type	LOADTypeVehicle Weight (Metric Ton833.01-117.01-227.0	POSTING RA INVENTC Moment s) RF LR 0.51 16.7 0.65 11.1 0.54 14.5	TING FAC DRY RATING Shea RF 0.29 0.45	IOR CALC Of Mor LR RF 7.6 1.09 3.9 0.89	PERATIN ment LR 27.9 18.6 24.2	NS BY LFN G RATING Shear RF L 0.49 16 0.75 12 0.55 14	A PO (M R T 5.1 2.7	STING Netric ons) 10 8 9		
Vehicle MS Type Type	LOAD Type Vehicle Weight (Metric Ton 8 33.0 1-1 17.0 1-2 27.0 12-2 38.0	POSTING RA INVENTO Moment RF LR 0.51 16.7 0.65 11.1 0.54 14.5 0.57 21.8	ORY RATING Shea RF 0.29 0.45 0.33 0.38	IOR CALC OF Mor LR P.6 0.85 7.6 1.09 3.9 0.89 4.5	LR 27.9 18.6 24.2 36.4	SBY LFN G RATING Shear RF L 0.49 16 0.75 12 0.55 14 0.644 24	PO (M R 1 2.7 4.9 1.2	STING Netric ons) 10 8 9 14		
Vehicle MS Type Type	LOAD Type Vehicle Weight (Metric Ton 8 8 33.0 1-1 17.0 1-2 27.0 2-2 38.0	POSTING RA INVENTC Moment s) RF LR 0.51 16.7 0.65 11.1 0.54 14.5 0.57 21.8	Constraint Constraint <thconstraint< th=""> Constraint Constrat</thconstraint<>	IOR CALC OF Mor LR RF 7.6 1.09 3.9 0.89 4.5	ULATIO PERATIN ment LR 27.9 18.6 24.2 36.4	NS BY LFN G RATING Shear RF L 0.49 16 0.75 12 0.55 14 0.64 24	A PO (N R Ti 5.1 2.7 1.9	STING Netric ons) 10 8 9 14		

INTERIOR RCDG CONTINUOUS

A. GENERAL

BACK TO MENU

A1. BRIDGE DESCRIPTION									
Bridge Loo	cation	REGION							
Bridge Name			STANDARD	ANDARD BRIDGE					
Bridge	Simple or Co	ntinuous	С	Reinforced	Concrete	T-beams			
Туре	Number of Sp	ban	3						
Bridge of	Width (curb to	o curb) (m)	7.32						
Number o	f Lanes		2						
Bridge Ler	ngth (m)		15.000	15.000	15.000			=45.000m	
Year Built			2000						
	Nos. of Girde	er	4	Multiple monotholic with deck slab.					
Structure	Girder Spacing (m)		2.400	on centers					
	Substructure		Wall Type	/pe RC Piers and RC Cantilever Abutments					
Wearing	thickness (mr	n)	0						
Course	material		Asphalt					_	
Matorial F	roportios		fc=	8.3	Мра	fs=	137.9	Мра	
Material I	lobellies		f'c=	20.7	Мра	fy=	275.8	Мра	
Assumption			Weight of	barrier rail	Wbr =	13.0	KN/m		
		Concrete	Unit Weigh	t Wu =	24.0	KN/m ³			
			Asphalt Ur	nit Weight V	Va =	22.0	KN/m ³		
Others			Rating Live	e Load is A	ASHTO MS18	3 (HS20-44)			

Matorial	Year of	foorfu	fc or fs			
Material	Construction	IC OF TY	Inventory	Operating	Posting	
	Prior to 1959	17.2	6.9	10.3	6.9	
Concrete	after 1959	20.7	8.3	13.1	8.3	
Concrete	1977 to 1981	27.6	11.0	16.5	11.0	*pc
	after 1981	31.0	12.4	18.6	12.4	*pc
	Prior to 1954	227.5	124.1	172.4	124.1	
Pobar	after 1954	275.8	137.9	193.1	137.9	
Rebui	Grade 50	344.7	137.9	224.1	137.9	*pc
	Grade 60	413.7	165.5	248.2	165.5	*pc

A2. BRIDGE LAYOUT AND DIMENSION

BRIDGE ELEVATION

SUPERSTRUCTURE CROSS SECTION

BRIDGE LAYOUT AND DIMENSION				
Girder width bw(m)	0.400			
Girder Web height h (m)	1.000			
Fillet/Haunch width wf(m)	0.100			
Fillet/Haunch height hf(m)	0.100			
Slab thickness ts (m)	0.200			
Span Length L(m)	15.000			

B. DEMAND FORCES

BO. INPUT					
	Girder width bw(m)	0.400			
	Girder Web height h (m)	1.000			
FOR	Fillet/Haunch width wf(m)	0.100			
DEAD	Fillet/Haunch height hf(m)	0.100			
LOAD	Slab thickness ts (m)	0.200			
	Slab width ws (m)	2.400			
	Span Length L(m)	15.000			

B1. DEAD LOAD CALCULATIONS					
Uniform Londoner mater of Circler (K) (m)	Self-weight of Girde	er	9.600		
	Fillet/Haunch		0.240		
	Slab Weight	Continuous	11.520		
	Barrier Rail	6.500			
	Asphalt Overlay	0.000			
	Total Load	27.860			
	Total DeadLoad	21.360			
	Total Superimposed	6.500			

B2. LOAD DEMAND MIDSPAN AND SUPPORT OF RCDG					
Conducting a Structural Analysis, the load demands for the RCDG should be obtained					
Description	At Midspan	At Pier Support			
Description	0.4L	1.0L			
Dead load moments, KN-m	496.7	-620.1			
Dead load shears, KN	-	-248.2			
M\$18 max. positive moment, KN-m	536.3	0.0			
M\$18 max. negative moment, KN-m	-	-416.4			
M\$18 max. negative Shear force, KN	-	-334.5			

C. LOAD RATING CALCULATIONS

Total area of Rebar					
Midspan Pier					
Nos of Rebar	10	13			
Dia. (mm)	36	28			
As(mm2)	10179	8005			
yb (mm)	126	63			

Stirrups				
	At Pier			
Dia. (mm)	16			
As(mm2)	201.1			
Spacing (mm)	150			

C1. CAPACITY CALCULATIONS

C1. INPUT					
(1) Common Inpu	t Data			At Midspan	At Pier
• • •		Allowable Stress	fc	8.	3
Material Properties	Concrete	Strength	f'c	20.7	
(Mpa)	Dalaan	Allowable Stress	fs	137	' .9
	Repar	Strength	fy	275	5.8
(2) Input Data for	Moment (Capacity		At Midspan	At Pier
Total Area of Steel As(mm ²)					8005
Section Loss due to R	ebar Exposi	ure (%)		0	0
Total Assumed Area o	of Steel As(mm2)		10179	8005
Centroid of rebars fro	m bottom a	of deck , yb (mm)		126	63
Centroid of rebars fro	m top of de	eck , d (mm)		1074	1137
		1215	; + bw	2800	-
Effective width of de	ck , b _{eff} (mr	Span L	3750	-	
		k	2400	400	
Ultimate capacity factor (Uf)					0.90
(3) Input Data for Shear Capacity					At Pier
Girder width bw(mm)					400
Depth of Shear Cracks (mm)					0
The Reduction Factor	r due to She	ear Cracks		-	1.00
Centroid of rebars fro	m top of de	eck , d (mm)		-	1137
Area of rebar Av(mm	1 ²)			-	201.1
Section Loss due to S	tirrups Expos	sure (%)		-	0
Iotal Assumed Area o	of Steel As(I	mm2)		-	201.1
Spacing of stirrups S	(mm) ctor (Uf)				150
					0.85
<u>C1</u>	<u>.1 MOMEN</u>	NT CAPACITY AT MIL	DSPAN	Al Midspun	At Pier
Rectangular stress blo	ock depth c	1 (mm)		66.5	313.7
The Moment Capacit	ty Mu (kN-r	n)		<u>2629.6</u>	1947.6
C	1.2 Sheaf	R CAPACITY AT SUP	PORI	Al Midspan	At Pier
The shear FULL capacity due to concrete section Vc (kN) -					345.6
The shear capacity due to concrete section Vc (kN) -					345.6
The shear FULL capacity due to shear reinforcement Vs (kN) -					840.7
The shear capacity du	Je to Stirrup	s Vs (kN)		-	840.7
The total shear capa	city Vu (kN)		-	1008.3

C2. LOAD RATING CALCULATIONS

C2.1	INPUT	At Midspan	At Pier
Load factor for dead load	ad factor for dead load		3
Load factor for live load	Inventory	2.17	
	Operating	1.3	3
Moment Ultimate Capacity at Midspan (kN-m)		2629.6	-1947.6
Dead Load Moment at Midspan	496.7	-620.1	
Live Load Moment at Midspan (kN-m)		536.3	-416.4
Shear Ultimate Capacity at Sup	port (KN)	_	-1008.3
Dead Load Shear at Support (KN)		_	-248.2
Live Load Shear at Support (KN)		_	-334.5
Rating Live Load (Tons)		33.0	

C2.2 CALCULATIONS OF R	Rating Factor	Load Rating			
		Midenan	Inventory Rating	1.70	56.3
	Moment	Midspan	Operating Rating	2.85	93.9
Pating Eactor and Load Pating		At Pier	Inventory Rating	1.26	41.7
Kaning racior and toda kaning			Operating Rating	2.11	69.6
	Shoar	At Pior	Inventory Rating	0.94	31.2
	SHECK	ALLEI	Operating Rating	1.58	52.0

Depend on the minimum value of Rating Factor > 1 or <1 , instruction in the below cell is automatically shown

Load Posting

Click following the above instruction

Return to GENERAL

Load Posting

D. LOAD POSTING BY LOAD FACTOR METHOD (LFM)

D1. DEMAND FORCES FOR LOAD POSTING VEHICLES

D1.2 POSTING VEHICLE DEMAND FORCES							
Conducting a Structural Analysis, the load demands for the RCDG should be obtained separately and input the necessary load demands in the Table below.							
Posting Vehicle	Demand Forces	At Midspan	At Pier Support				
T 1 1	Moment	382.8	-205.0				
туре т-т	Shear	-	-130.0				
	Moment	492.6	-303.4				
Type T-2	Shear	-	-188.1				
Type 12-2	Moment	450.5	-392.6				
	Shear	-	-201.1				

D2. POSTING RATING CALCULATIONS

D2.1 INPUT									
Load fac	tor for dea	ad load				1.3			
Inve			entory		2.17				
		Ope	Operating		1.3				
				Mon	nent	Shear			
					Midspan	At Pier	At Pier		
Moment Ultimate Capacity					2629.6	1947.6	1008.3		
Dead Loo	ad				496.7	620.1	248.2		
					Mon	nent	Shear	Vehicle	
					Midspan	At Pier		Weight	
	d Manaant	ort Michara	ana /lab.l	MS18	536.3	416.4	334.5	33.0	
Live Load Moment at Midspan (KN- m) Live Load Shear at Support (KN)			Type 1-1	382.8	205.0	130.0	17.0		
			Type 1-2	492.6	303.4	188.1	27.0		
LIVE LOGO		556600		Type 12-2	450.5	392.6	201.1	38.0	

	D2.2 LOAD POSTING RATING FACTOR CALCULATIONS BY LFM									
Vehicle Vehicle Weight	Vehicle	Inventory Rating			g Operating Rating				Postina	
	Mor	nent	She	ear	Mor	nent	Sh	ear	(Metric	
туре	Tons)	RF	LR	RF	LR	RF	LR	RF	LR	Tons)
(1) At N	lidspan									
M\$18	33.0	1.70	56.3	-	-	2.85	93.9	-	-	33
Type 1-1	17.0	2.39	40.6	-	-	3.99	67.8	-	-	17
Type 1-2	27.0	1.86	50.1	-	-	3.10	83.6	-	-	27
Туре 12-2	38.0	2.03	77.1	-	-	3.39	128.7	-	-	38
(2) At P	ier Supp	ort								
M\$18	33.0	1.26	41.7	0.94	31.2	2.11	69.6	1.58	52.0	31
Type 1-1	17.0	2.57	43.6	2.43	41.3	4.28	72.8	4.06	69.0	17
Type 1-2	27.0	1.73	46.8	1.68	45.4	2.89	78.1	2.80	75.7	27
Type 12-2	38.0	1.34	50.9	1.57	59.7	2.24	85.0	2.62	99.7	38

E. Load Rating by Allowable Stress Method

E1. MOMENT AND SHEAR CAPACITY CALCULATIONS

	E1.1 Input			Midspan	At Pier	
		fc	Inventory	8	.3	
	Concrete		Operating	13	5.1	
Material Properties			f'c	20).7	
	Rehar	fs	Inventory	13	7.9	
	Kobai	15	Operating	193	3.1	
Total Assumed Area of	Steel As(mm²)			10179	8005	
Area of rebar Av(mm ²)				201.1	201.1	
Spacing of stirrups S (m	ım)			150	150	
Centroid of rebars from	top of deck , d (mm)			1074	1137	
Effective width of deck	2400	400				
Girder width bw(m)				400	400	
Rebar Ratio ρ = As / (k	peff x d)			0.00395	0.01760	
Modular Ratio of Elastic	city n = Es / Ec			12	12	
$k = \sqrt{[2 \rho n + (\rho n)^2]}$	on			0.2641	0.4722	
j				0.9120	0.8426	
kd				294.6	536.9	
Slab thickness ts (mm)				200.0	200.0	
k	0.2743	-				
Z	Z					
jd				975.80	958.04	

Calculation of kd								
n	As	d	b	ts	bw			
12	10179	1074	2400	200.0	400			
nAs	nAsd	bts	1/2bts ²	bwy	y/2+ts			
122148	131186952	480000	48000000	37840	247.3			
ts+y	Ycalculate				Yinput			
294.6	94.6				94.6			

E1.2 MOMENT A	E1.2 MOMENT AND SHEAR CAPACITY CALCULATIONS							
	Capacity		Inventory	2617.2	-853.8			
Moment (kN-m)	by concrete allowab	Operating	4130.8	-1347.6				
	Capacity		Inventory	1369.7	-1057.6			
	by rebar allowable st	Operating	1918.0	-1480.9				
	Capacity due to	Vc	Inventory	-	165.5			
	concrete section		Operating	I	248.3			
Shear (KNI)	Capacity	Vc	Inventory	-	420.3			
SHECH (KN)	due to rebar	۷۵	Operating	I	588.6			
	Shear capacity	\/	Inventory	-	585.9			
	snear capacity VU		Operating	-	836.9			

E2. LOAD RATING CALCULATIONS

E2.1 INPUT	Midspan	At Pier	
Load factor for dead load		1.	.0
Load factor for live load		1	.0
Moment Canacity at Midshan (KN m)	Inventory	1369.71	-853.82
	Operating	1918.0	-1347.6
Dead Load Moment at Midspan (kN-m)	496.7	-620.1	
Live Load Moment at Midspan (kN-m)		536.3	-416.4
Shear Canacity at Support (KNI)	Inventory	-	-585.9
Shear Capacity at support (King	Operating	-	-836.9
Dead Load Shear at Support (KN)		_	-248.2
Live Load Shear at Support (KN)	-	-334.5	
Rating Live Load (Tons)	33.0		

E2.2. RATING FAC	Rating Factor	Load Rating			
		Midspap	Inventory Rating	1.63	53.72
	Moment	maspan	Operating Rating	2.65	87.46
Pating Factor and Load Pating		At Pier	Inventory Rating	0.56	18.52
Kunng racior and Load Kunng			Operating Rating	1.75	57.65
	Shoar	At Pior	Inventory Rating	1.01	33.31
	Shear	ALLIEL	Operating Rating	1.76	58.08

F. LOAD POSTING BY ALLOWABLE STRESS METHOD

F1. INPUT								
Load factor for dead load			1.0					
Load factor for live load			1.0					
		Mon	nent	Shear				
		Midspan	At Pier	At Pier				
Moment and Shear Capacity	Inventory	1369.7	-853.8	-585.9				
	Operating	1918.0	-1347.6	-836.9				
Dead Load		496.7	-620.1	-248.2				
		Mon	nent	Shear	Vehicle			
		Midspan	At Pier	At Pier	Weight			
Live Load Memort at Midenan (K)	M\$18	536.3	-416.4	-334.5	33.0			
Live Load Momeni al Miaspan (kin-	Type 1-1	382.8	-205.0	-130.0	17.0			
Live Load Shear at Support (KN)	Type 1-2	492.6	-303.4	-188.1	27.0			
	Type 12-2	450.5	-392.6	-201.1	38.0			

	F2. LOAD POSTING RATING FACTOR CALCULATIONS (ASM)										
	Vehicle		Invento	ory Rating		Operatir	ng Rating		Postina		
Vehicle Weight	Mor	nent	She	ar	Mor	nent	Sh	ear	(Metric		
.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Tons)	RF	LR	RF	LR	RF	LR	RF	LR	Tons)	
(1) AT N	(1) AT MIDSPAN										
M\$18	33.0	1.63	53.7	-	-	2.65	87.5	-	-	33	
Type 1-1	17.0	2.28	38.8	-	-	3.71	63.1	-	-	17	
Type 1-2	27.0	1.77	47.9	-	-	2.89	77.9	-	-	27	
Type 12-2	38.0	1.94	73.6	-	-	3.15	119.9	-	-	38	
(2) AT P	IER SUPP	ORT									
M\$18	33.0	0.56	18.5	1.01	33.3	1.75	57.7	1.76	58.1	19	
Type 1-1	17.0	1.14	19.4	2.60	44.2	3.55	60.3	4.53	77.0	17	
Type 1-2	27.0	0.77	20.8	1.80	48.5	2.40	64.7	3.13	84.5	21	
Type 12-2	38.0	0.60	22.6	1.68	63.8	1.85	70.4	2.93	111.2	23	

G. SUMMARY OF LOAD POSTING

SUMMARY OF RESULTS FOR LOAD POSTING									
	Vehicle	Allowable	Stress (ASM)	Load Fac	ctor (LFM)	Load			
Vehicle Type	Weight (Metric Tons)	Rating Factor	Load Rating	Rating Factor	Load Rating	Posting (Tons)			
MS18	33.0	0.56	18.5	0.94	31.2	19T			
Type 1-1	17.0	1.14	19.4	2.39	40.6	17T			
Type 1-2	27.0	0.77	20.8	1.68	45.4	21T			
Type 12-2	38.0	0.60	22.6	1.34	50.9	23T			

END AND GO TO DECK SLAB

	DEPARTMENT OF PUBLIC	WORKS AND HIGHWAYS	BRIDGE ID	• **** •	PAGE :
	LOAD RATING (CALCULATIONS	BRIDGE NAME	: RCDG C	CONTINUOUS
					NOTES
B. DEIVIAI	ND FORCES				
B.1 DEAD L	OAD CALCULATIONS				
The de (3) Tribu	ad loads considered in the calc utary area of slab, (4) Barrier rail:	ulations include (1) Girder self s (Assumed to be equally distril	weight, (2) Fillet/h outed among gird	aunch, ers).	
 Self-we 	eight of girder = (0.40m)	(1.00m) (24 KN/m ³)		= 9.600	KN/m
• Fillet/ho	aunch = 2 (1/2) (0.1m	i) (0.1m) (24 KN/m ³)		= 0.240	KN/m
• Slab W	eight (Tributary) = (0.20m)	(2.40m) (24 KN/m ³)		= 11.520	KN/m
Barrier	rail = $2(3.6/4)$			= 6.500	KN/m
	Total Unifor	rm Load of Interior Girder, w		= 27.860	KN/m
B.2 LOAD [Demand Midspan and Suppor	I OF RCDG			
The carriag	geway width is 7.32m curb to cu hall carry two-lanes.	rb. AASHTO specifies a clear lo	ne width of 5.4m,	thus	Manual 1st Ed. Sect 3.4.2
					00010.112
The distribu	ution of wheel loads for two trafi	fic lanes for T-beams shall be to	aken as S/1.829		DPWH Table 3-4
• Nur	nber of live load wheel line	= 3.20 / 1.829	=	1.750	AASHTO Table 3.23.1
					(5/6 in π.)
• Imp	pact factor, I = 15.24 /	(15.0) + 38.00)	=	0.287	DPWH
Conductin	na a Structural Analysis, the load	demands for the RCDGContir	nuous should be o	htained	Sect. 3.2.5.1
separately	and input the necessary lo				
		At Midspan	At Pier Sup	port	
	Description	0.4L	1.0L		
Dead load	d moments, KN-m	496.7	-620.1		
Dead load	d shears, KN	-	-248.2		
MS18 max	. positive moment, KN-m	536.3	0.0		
MS18 max	k. negative moment, KN-m	-	-416.4		
MS18 max	k. negative Shear force, KN	-	-334.5		
l					
NAIEU DÍ :	DAIE :	CHECKED BY	•	DAIE :	

-														NOT
	ωστιν		ωνι	ר אנ		о млет	п П		<i>л</i> \					
	USIIN	GDTL	UAL	JFA			HOD		//)					
he proc	edure fo	r load pos	ting is s	similar t	o the a	bove u	sing loc	ad post	ing ver	nicles fo	r live lo	oad.		
emand	FORCES	FOR LOAD	POSTI	NG VEH	HICLES									
ha liva la	ad mor	ments and	shears	can be		rately t	aken fr	om cor	oductio	a a stru	ictural	analysis		
correspon	nding to	Types 1-1,	1-2 ar	nd 12-2	Posting	Vehicl	es.	5111 COI	labelli	g a 310	ciorai	011019313		
or 3-spa	n contin	uous (3@1	5.0m) k	oridge,	the Pos	sting Liv	e Load	dema	nds are	:				
	Vehiel								Miclara		A 4 1		ort	
	Venici	e type	м	oment	LL Dem	lana		AI	.382.8	un	AIr	-205 0	On	
	Туре	e 1-1	Sh	near								-130.0		
	Type	1_2	М	oment					492.6			-303.4		
	iyhe	, I-∠	Sh	near								-188.1		
	Туре	12-2	M	oment					450.5			-392.6		
			Sh	near								-201.1		
imilar cc	alculatio	ns are don	e using	a Eas. 3	.2-4 and	d 3.1-5 i	for ratir	a facto	or and I	oad ra [.]	ting			
								0			0			
		LOAD F	POSTIN	ig rat	ing fa	ACTOR	CALC	JLATIO	NS BY	LFM				
										TINC				
Vehic	le Type	Vehicle Weight	Mor	ment	Sh	ear	Mor	nent	G RAIII She	ear	POS (Me	etric		
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(Metric Tons)	RF	LR	RF	LR	RF	LR	RF	LR	То	ins)		
	1518	33 0	1 70	56 2			285	03.0				22		
10	1010	55.0	1.70	50.5			2.00	75.7				5		
Тур	be 1-1	17.0	2.39	40.6			3.99	67.8			1	7		
-		07.5									-	_		
lyp	be I-2	27.0	1.86	50.1			3.10	83.6			2	27		
Type	e 12-2	38.0	2.03	77.1			3.39	128.7			3	38		
.,1•														
					ING FA		CALC		NS RV	IFM				
			55111		AT PIE	R SUPP	ORT							
		Vehicle	IN	VENTO	RY RATII	NG	OF	PERATIN	G RATII	NG	POS	TING		
Vehic	cle Type	Weight	Moi	ment	Sh	ear	Mor	nent	She	ear	(Me	etric		
		(Κŀ	LR	κŀ	LK	KF	LK	KF	LK	lo	ons)		
Μ	1518	33.0	1.26	41.7	0.94	31.2	2.11	69.6	1.58	52.0	3	31		
-		17.0	0.57	10 <i>i</i>	0.40	(1.0	4.00	70.0	4.0.1	(0.0				
Тур	be I-I	17.0	2.57	43.6	2.43	41.3	4.28	/2.8	4.06	69.0	1	1		
Typ	be 1-2	27.0	1.73	46.8	1.68	45.4	2.89	78.1	2.80	75.7	2	27		
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		-	-						-		_			
Тур	e 12-2	38.0	1.34	50.9	1.57	59.7	2.24	85.0	2.62	99.7	3	88		

	DEPARTMENT OF PU	BLIC WORKS AND HIGHWAYS	BRIDGE ID : **** PAGE :
	LOAD RATIN	G CALCULATIONS	BRIDGE NAME : RCDG CONTINUOUS
lf concr	ete allowable stress contr	ols, the capacity becomes:	
At Ir	$\frac{1}{2}$	id) At Operating	g Level
1	= - (400)(268.45	$(8.3)(958.04)(10^{-6}) =$	$-(400)(268.45)(13.1)(958.04)(10^{-6})$
	= - 853.8 kN-m	=	- 1,347.6 kN-m
lf rebar	allowable stress controls,	the capacity becomes,	erning since Mc < Ms
At Inver Ms	ntory Level = - As fs id	At Operating Level Ms = - As fs id	
	= - (8,005)(137.9)(958.04)	= - (8,005)(193	3.1)(958.04)
	= -1,057.60 kN-m	= -1,480.90	kN-m
	ACITY CALCULATIONS		
The cor	nditions for shear capacity	calculations is the same as that pr	reviously calculated.
• The	shear capacity due to	concrete section:	
/	At Inventory Level		
١	√c = 0.08 fc bw d = 0.08	20.7) (400) (1,137) = 165.50	
		==>> fu	Ill concrete capacity
/	At Operating Level		
١	Vc = 0.12 fc bw d = 0.12 (20.7) (400) (1,137) = 248.30 ==>> fu	ull concrete capacity
• The	shear canacity due to sh	acr reinforcement:	
• IIIe	shedi capacity abe to sh		
/	At Inventory Level	- 2/201 11/137 01/1 137//1	50
,	vs – 2 Av 15 05 / 5	= 2(201.1)(137.7)(1,137))(1,137)	
,	At Operating Level		
1	$\sqrt{s} = 2 \text{ Av fs ds / S}$	= 2(201.1)(193.1)(1,137)/1	50
		= 588.6 kN	
• The	total shear capacity bec	omes:	
/	At Inventory Level		
١	$V_U = V_C + V_S$	= 165.5 + 420.3 $= 585.9 kN$	
/	At Operating Level	= 2483 + 5884	
,		= 836.9 kN	

NOTES

RATED BY :

DEPARTMENT OF PUBLIC WORKS AND HIGHWAYS

BRIDGE NAME : RCDG CONTINUOUS

:

BRIDGE ID

PAGE :

Similarly, using Eq. 3.2-1 and Eq. 3.1-5, load posting calculations are presented below

	LOAD POSTING RATING FACTOR CALCULATIONS BY ASM										
AT MIDSPAN											
	Vehicle	IN	VENTOR	ry ratii	١G	OF	PERATIN	G RATII	١G	POSTING	
Vehicle Type	Weight	Mor	nent	She	ear	Mor	nent	She	ear	(Metric	
		(Metric Tons)	RF	LR	RF	LR	RF	LR	RF	LR	Tons)
M\$18	33.0	1.63	53.7			2.65	87.5			33	
Type 1-1	17.0	2.28	38.8			3.71	63.1			17	
Type 1-2	27.0	1.77	47.9		-	2.89	77.9			27	
Type 12-2	38.0	1.94	73.6			3.15	119.9			38	

	LOAD POSTING RATING FACTOR CALCULATIONS BY ASM AT PIER SUPPORT										
	Vehicle	INVENTORY RATING				OF	PERATIN	G RATI	NG	POSTING	
Vehicle Type	Weight	Mor	nent	Sh	ear	Mor	nent	Sh	ear	(Metric	
		(Metric Tons)	RF	LR	RF	LR	RF	LR	RF	LR	Tons)
MS18	33.0	0.56	18.5	1.01	33.3	1.75	57.7	1.76	58.1	18	
Type 1-1	17.0	1.14	19.4	2.60	44.2	3.55	60.3	4.53	77.0	17	
Type 1-2	27.0	0.77	20.8	1.80	48.5	2.40	64.7	3.13	84.5	21	
Type 12-2	38.0	0.60	22.6	1.68	63.8	1.85	70.4	2.93	111.2	23	

The summary of calculation results for both the load factor and the allowable stress methods are presented below.

	SUMMARY OF RESULTS FOR LOAD POSTING												
Vehicle Type	Vehicle	Allowable S	Stress (ASM)	Load Fac	POSTING								
	Weight (Metric Tons)	Rating Factor	Load Rating	Rating Factor	Load Rating	(Metric Tons)							
M\$18	33.0	0.56	18.5	0.94	31.2	18							
Type 1-1	17.0	1.14	19.4	2.38	40.6	17							
Type 1-2	27.0	0.77	20.8	1.68	45.4	21							
Type 12-2	38.0	0.60	22.6	1.34	50.9	23							

DATE :

EXAMPLE 3

PRESTRESSED CONCRETE DECK GIRDER BRIDGE

Example 3-1: Simple

Example 3-2: Continuous

INTERIOR PCDG SIMPLE

A. GENERAL

BACK TO MENU

			A1. BRI	DGE DESC	RIPTION			
Bridge Loc	cation	REGION						
Bridge Na	me							
Bridge	Simple or Cor	ntinuous	S	Precast, Pi	restressed I C	Girder Bridge	e	
Туре	Type Number of Span		1					
Bridge Width (curb to curb) (m)		7.32						
Number o	f Lanes		2					
Bridge Ler	ngth (m)		35.000					=35.000 m
Year Built			2003					
	Nos. of Girde	er	4					
Structure	Girder Spaci	ng (m)	2.100	on centers				
	Substructure	Substructure		bents and abutments				
Wearing	thickness (m	m)	50			-		
Course	material		Asphalt					
		f'c (Girder)		38	MPa		
		f'c (Slab)			24.2	MPa		
Notos on I	Plans	Ultimate St	trength of T	endons fu	1860	MPa		
NOIES OFF		Working Fo	orce		5270	kN (Effective after losses)		
		Controid	of PC Tonda		100	mm (from s	soffit at Mic	lspan)
		Cerniola (2112	824	mm (from s	soffit at And	chorage)
		Weight of	barrier rail	Wbr =	13.0	KN/m		
Assumation	-	fy (Reinfor	cing Bars)		415	Мра		
Assumptio	Assumption		Unit Weigh	t Wu =	24.0	KN/m ³		
		Asphalt Ur	nit Weight V	Va =	22.0	KN/m ³		
Others		Rating Live	e Load is A	ASHTO MS18	(HS20-44)	·		

Matorial	Year of	foorfu	fc or fs				
Material	Construction	I C OF TY	Inventory	Operating	Posting		
Concrete	Prior to 1959	17.2	6.9	10.3	6.9		
	after 1959	20.7	8.3	13.1	8.3		
	1977 to 1981	27.6	11.0	16.5	11.0	*pc	
	after 1981	31.0	12.4	18.6	12.4	*pc	
	Prior to 1954	227.5	124.1	172.4	124.1	-	
Pobar	after 1954	275.8	137.9	193.1	137.9		
Rebui	Grade 50	344.7	137.9	224.1	137.9	*pc	
	Grade 60	413.7	165.5	248.2	165.5	*pc	

A2. BRIDGE LAYOUT AND DIMENSION

	-		· •	•
N	ы	X		
	-	-		

0.127

0.076

0.076

0.102

1.270 0.254

0.203

1.067

0.330

0.102

0.102

0.203

0.254

0.711

Uflg

Web

Lflg

B. DEMAND FORCES

B1. DEAD LOAD CALCULATIONS

B1.1 INPUT							
	Area of Girder (m ²)	0.645					
	Span Length (m)	35.0					
FOR	Composite Girder Height (m)	1.800					
	Girder Height (m)	1.600					
DEAD	Slab thickness (m)	0.200					
LOAD	Slab Spacing (m)	2.100					
	Weight of Diaphram (kN/m)	1.5					
	Weight of Barrier Rail (kN/m)	13					
	Number of Girder (nos.)	4					

B1.2 DEAD LOAD CALCULATIONS						
	Self-weight of Girder	15.49				
	Slab weight	10.08				
	Weight of Diaphram	1.50				
Uniform Load per meter of Girder	Barrier Rail	6.50				
(KN/m)	Asphalt Overlay	2.31				
	Total	35.88				
	Total of Dead Load	27.07				
	Total of Superimposed Dead Load	8.81				
Dead Load Moment at	Midspan M _{DL} (kN-m)	4145.0				
Superimposed Dead Lo	ad Moment at Midspan M _{SDL} (kN-m)	1349.0				
Dead Load Shear at Su	ipport V _{DL} (kN)	473.7				
Superimposed Dead Lo	ad Shear at Support V_{SDL} (kN)	154.2				

B2. LIVE LOAD CALCULATIONS

B2. LIVE-LOAD CALCULATIONS									
LIVE-LOAD Type	MS18(HS20)								
Number of live load wheel line	1.148								
Impact factor	0.209								
span	35.00								
May MS18 moment for 35.00m span	hubaallina	without Impact	ML	1227.9					
Max.M318 moment for 35.00m span	/ wheel line	with Impact	M _{LL}	1704.1					
Max.MS18 shear at a distance "d"		without Impact	VL	148.8					
from the support/wheel line		with Impact	V _{LL}	206.6					

B2. FORCE DEMAND CALCULATIONS			
Description	Moment	Shear	
	C (0.5L)	At Support	
Dead load (kN-m)	4145.0	473.7	
Superimposed Dead load (kN-m)	1349.0	154.2	
M\$18 moment with Impact (kN-m)	1704.1	206.6	

B3. SECTION PROPERTIES CALCULATION					
Load Condition	A (m ²)	lz (m⁴)	Y _b (m)	Y _t (m)	Y _t slab (m)
For Dead Loads	0.645	0.214	0.804	0.796	NA
For Superposed Dead Load and Live Loads	1.065	0.419	1.157	0.443	0.643

B4. STRESS CALCULATIONS

(1) Stress at Midspan

	Stresses in the PCI Girder (Mpa)			
Loading	Top Concrete	Bottom Concrete	Centroid of	
	Fiber	Fiber	Composite	
Dead Load (Self + Slab)	15.44	-15.61	6.85	
Prestress (Pef=5270kN)	-5.66	22.14	2.03	
Superimposed Dead Load	1.42	-3.73	0.00	
Live Load	1.80	-4.71	0.00	

C2. LOAD RATING CALCULATIONS

C2.1 LOAD RATING BASED ON SERVICEABILITY LIMIT STATE				
(1) USING COMPRESSIVE STRESS				
For Strength Factor	0.6			
For Strength Factor	0.4			
For Dead Load Factor	0.5			
Concrete Compressive Stress	38			
Dead Load Stress	16.87			
Prestress after all losses	-5.66			
Secondary Prestress	0.00			
Live Load stresses including Impact	1.80			
Using Compressive Stress Under All Load Combination	6.44			
Using Compressive Stress Under Live Load	5.33			
(2) USING ALLOWABLE TENSION STRESS				
Dead Load Stress	-19.33			
Prestress after all losses	22.14			
Secondary Prestress	0.00			
Live Load stresses including Impact	-4.71			
Using the Allowable Tension in Concrete	1.25			

C2.2 LOAD RATING BASED ON STRENGTH LIMIT STATE				
Dead Load Factor		1.3		
Live Load factor	Inventory	2.17		
	Operating	1.3		
		ection C (at Midspan	Section B (Support)	
		Moment	Shear	
Moment and Shear Capacity		12006.6	1489.4	
Moment and Shear due to Dead Load		4145.0	473.7	
Moment and Shear due to Superimposed Dead Load		1349.0	154.2	
Moment and Shear due to Live Load		1704.1	206.6	

C2.3 LOAD RATING CALCULATIONS				
Description	Moment		Shear	
	Inventory	Operating	Inventory	Operating
Rating Factor	1.32	2.20	1.50	2.51
Rating Live Load (MS18) (Metic Tons)	33.0			
Load Rating Calculations	43.4	72.5	49.6	82.7
C. LOAD RATING BY LOAD FACTOR METHOD (LFM)

C1. CAPACITY CALCULATIONS

C1.1 MOMENT CAPACITY at MIDSPAN					
Assumed total prestressing loss $\sigma_{ ext{LOSS}}$ (Mpa)	158.1				
Ultimate Strength of Tendons fu (Mpa)	1860				
Web Width bw (mm)	203				
Φ	1.00				
Prestressing Steel Area As* (mm ²)	4261				
Section Loss (%)	0				
Total Assumed Area of Steel As(mm2)	4261				
Effective width of deck , beff (mm)	2100				
Centroid of Prestressing Steel from top of deck , d (mm)	1700				
Yield Strength of Tendons fy (Mpa)	1570				
k=2(1.04-fy/fu)	0.39	Cinput			
Neutral axis location (mm)	231.2	231.2			
Moment Capacity at Midspan R (kN-m)	12007				

C1.2 SHEAR CAPACITY at SUPPORT						
Web Width bw (mm)	203					
Depth of Shear Cracks (mm)	0					
The Reduction Factor due to Shear Cracks	1.00					
Diameter of Stirrups (mm)	12					
Area of Stirrups Φs (mm ²)	113.1					
Spacing of Stirrups (mm)	200					
Section Loss due to Stirrups Exposure (%)	0					
Total Assumed Area of Steel As(mm2)	113.1					
Nominal Shear Capacity Factor Φ c	0.85					
Nominal Shear Strength provided by concrete Vc (kN)	109.5					
Nominal Shear Strength provided by Rebar Vs (kN)	1642.7					
Shear Capacity Vu	1489.4					

	C2.3 SUMMARY OF RATING FACTOR AND LOAD RATING								
Wo	ight of Vahiela (Matric	Tops	22	At Mi	dspan	At Su	pport		
weight of vehicle (Mehic Tons)		55	RF	LR	RF	LR			
	Rating Limit State	Comprossion	All Load	6.44	212.6	-	-		
Ratina		Complession	Live Load	5.33	176.0	-	-		
Factor		Allowable	Tension	1.25	41.3	-	-		
and		Momont	Inventory	1.32	43.4	-	-		
Load	Strongth Limit State	Moment	Operating	2.20	72.5	-	-		
Rating	Silengin Linii Sidie	Shear	Inventory	-	-	1.50	49.6		
		Shear	Operating	-	-	2.51	82.7		
Minimum	Rating Factor and Loa	d Rating		1.25	41.3	1.50	49.6		

Depend on the minimum value of Rating Factor > 1 or <1 , instruction in the below cell is automatically shown

Return to GENERAL

Click following the above instruction

Return to GENERAL

Load Posting

D. LOAD POSTING BY LOAD FACTOR METHOD (LFM)

D1. DEMAND FORCES FOR LOAD POSTING VEHICLES

D1.1 DEMAND FORCES FOR LOAD POSTING VEHICLES						
(1) POSTING VEHICLE Type	1-1					
LIVE-LOAD Type	Type1-1					
Number of live load wheel line	1.148					
Impact factor	0.209					
span	35.00					
Type 1.1 memort for 35.00m span	whool ling	without Impact	ML	695.45		
Type 1-1 moment for 55.00m span /		with Impact	M _{LL}	965.19		
Type 1-1 shear at a distance "d"		without Impact	VL	81.46		
from the support/wheel line		with Impact	V _{LL}	113.06		
(2) POSTING VEHICLE Type	1-2					
LIVE-LOAD Type	Type1-2					
Type 1.2 memort for 25.00m span	wheelling	without Impact	ML	1036.00		
Type 1-2 moment for 55.00m span /		with Impact	M _{LL}	1437.83		
Type 1-2 shear at a distance "d"		without Impact	VL	123.91		
from the support/wheel line		with Impact	V _{LL}	171.97		
(3) POSTING VEHICLE Type	12-2					
LIVE-LOAD Type	Type12-2					
Type 12.2 memory for 25.00m span	wheelline	without Impact	ML	1261.27		
rype rz-z momeni tor 55.00m span /		with Impact	M _{LL}	1750.48		
Type 12-2 shear at a distance "d"		without Impact	VL	156.27		
from the support/wheel line		with Impact	V _{LL}	216.88		

D2. POSTING RATING CALCULATIONS

D2.1 POSTING RATING BASED ON SERVICEABILITY LIMIT STATE							
(1) USING COMPRESSIVE STRESS							
Description		At Midspan	At Support				
For Strength Factor		(0.6				
For Strength Factor		(0.4				
For Dead Load Factor		0.5					
Concrete Compressive Stress		38					
Dead Load Stress		16.87	-				
Prestress after all losses		-5.66	-				
Secondary Prestress		0.00	-				
	Type 1-1	1.02	-				
Live Load stresses including Impact	Type 1-2	1.52	-				
	Type 12-2	1.85	-				
Using Comprossive Stress	Type 1-1	11.37	-				
Using Compressive Stress	Type 1-2	7.64	-				
	Type 12-2	6.27	-				
	Type 1-1	9.42	-				
Using Compressive Stress of Live Load	Type 1-2	6.32	-				
	Type 12-2	5.19	-				
(2) USING ALLOWABLE TENSION STRESS							
Dead Load Stress		-19.33	-				
Prestress after all losses		22.14	-				
Secondary Prestress		0.00	-				
	Type 1-1	-2.67	-				
Live Load stresses including Impact	Type 1-2	-3.97	-				
	Type 12-2	-4.83	-				
	Type 1-1	2.21	-				
Using the Allowable Tension in Concrete	Type 1-2	1.48	-				
	Type 12-2	1.22	-				

D3. LOAD RATING CALCULATIONS

D3.1 POSTING RATING BASED ON STRENGTH LIMIT STATE								
Dead Load Factor]	.3					
Live Load factor	Inventory	2	.17					
	Operating	1	.3					
Description		Moment at Midspan	Shear at Support					
Moment and Shear Capacity		12007	1489					
Moment and Shear due to Dead Load		4145.0	473.7					
Moment and Shear due to Superimposed Dec	ad Load	1349.0	154.2					
	Type 1-1	965.2	113.1					
Moment and Shear due to Live Load	Type 1-2	1437.8	172.0					
	Туре 12-2	1750.5	216.9					

D3.2 POSTING RATING CALCULATIONS								
Description		Moment of	at Midspan	Shear a	Shear at Support			
Description			Inventory	Operating	Inventory	Operating		
		Type 1-1	2.32	3.88	2.74	4.58		
Rating Factor		Type 1-2	1.56	2.60	1.80	3.01		
		Type 12-2	1.28	2.14	1.43	2.39		
Doctting Live Load		Type 1-1		17.0				
(Metic Tons)	Weight of vehicle	Type 1-2		27.0				
		Type 12-2		38.0				
Load Rating Calculations		Type 1-1	39.5	65.9	46.6	77.9		
		Type 1-2	26.5	70.3	30.7	81.3		
		Туре 12-2	21.8	81.2	24.3	90.7		

	D3.3 SUMMARY OF POSTING RATING FACTOR AND LOAD RATING							
				At Mi	dspan	At Su	pport	
				RF	LR	RF	LR	
(1) POST	ING VEHICLE TYPE	1-1		Weight c	of Vehicle	17 (Meto	oric Tons)	
Service eleility		Comprossion	All Load	11.37	193.4	-	-	
Rating	Limit State	Compression	Live Load	9.42	160.1	-	-	
Factor		Allowable	Tension	2.21	37.6	-	-	
and		Momont	Inventory	2.32	39.5	-	-	
Load Rating	Strongth Limit State	Momeni	Operating	3.88	65.9	-	-	
		Shoar	Inventory	-	-	2.74	46.6	
		Shear	Operating	-	-	4.58	77.9	
Minimum R	Rating Factor and Load	d Rating		2.21	37.6	2.74	46.6	
(2) POST	ING VEHICLE TYPE	1-2		Weight c	of Vehicle	27 (Metoric Tons)		
	Serviceability Limit State	Comprossion	All Load	7.64	206.2	-	-	
Ratina		Compression	Live Load	6.32	170.7	-	-	
Factor		Allowable Tension		1.48	40.1	-	-	
and		Momont	Inventory	1.56	42.1	-	-	
Load	Strongth Limit State	Momeni	Operating	2.60	70.3	-	-	
Rating		Shoar	Inventory	-	-	1.80	48.7	
		311601	Operating	-	-	3.01	81.3	
Minimum R	Rating Factor and Load	d Rating		1.48	40.1	1.80	48.7	
(3) POST	ING VEHICLE TYPE	12-2		Weight c	of Vehicle	38 (Meto	oric Tons)	
	Sonioogbility	Comprossion	All Load	6.27	238.3	-	-	
Ratina	Limit State	Compression	Live Load	5.19	197.3	-	-	
Factor		Allowable	Tension	1.22	46.3	-	-	
and		Moment	Inventory	1.28	48.7	-	-	
Load	Strength Limit State	MOMENT	Operating	2.14	81.2	-	-	
Rating		Shoar	Inventory	-	-	1.43	54.4	
		SHECH	Operating	_	-	2.39	90.7	
Minimum R	Rating Factor and Load	d Rating		1.22	46.3	1.43	54.4	

E. SUMMARY OF LOAD POSTING

	SUMMARY OF RESULTS FOR LOAD POSTING											
	Vehicle	AT MI	DSPAN	AT SU	PPORT	Load						
Vehicle Type	Weight (Metric Tons)	Rating Factor	Load Rating	Rating Factor	Load Rating	Posting (Tons)						
MS18	33.0	1.25	41.3	1.50	49.6	33T						
Type 1-1	17.0	2.21	37.6	2.74	46.6	17T						
Type 1-2	27.0	1.48	40.1	1.80	48.7	27T						
Type 12-2	38.0	1.22	46.3	1.43	54.4	38T						

END AND GO TO DECK SLAB

	J.	DEPARTM	ient of public wo	rks and high	WAYS	BRIDGE ID	:	****	PAGE	:
-V		LOAD	RATING CA	LCULAT	IONS	BRIDGE NAME	:	PCDG SI	MPLE	
										NOTES
B. D ^{B.1}	EMA	ND FORCES	ons							
• • •	The de (3) Trib (5) We Self-we Slab W Weigh Barrier	ead loads conside utary area of sla aring course. eight of girder (eight (Tributary) t of Diaphram rail	ered in the calculd b, (4) Barrier rails (A = (0.6454m = (0.20m) (2 = = 2 (13.0/4)	tions include (ssumed to be 2) (24 KN/ .10m) (24 KN/	1) Girder self- equally distrib m ³) m ³)	weight, (2) Fillet/ buted among gir	'haur dersj = = = =	nch, 15.49 10.08 1.50 6.50	KN/m KN/m KN/m KN/m	
•	Wearir	ng course	= (0.05m) (2	.10m) (22 KN/	m ³)		=	2.31	KN/m	
			Total Uniform	Load of Interio	r Girder, w		=	35.88	KN/m	
			Total Uniform	Deaa Load of Superimposed	Graer, W _{DL}	of Girder w	=	27.07 	KN/M	
						SILUEI, WSDL	-	0.01	KIN/111	
•	Dead I	Load Moment at	Midspan, M _{DL}	= 27.07	x 35.00 ²	/8	=	4145.0	KN-m	$M_d = wL^2/8$
•	Superir at Mid:	mposed Dead Lo span, M _{SDL}	oad Moment	= 8.81	x 35.00 ²	/8	=	1349.0	KN-m	
•	Dead I	Load Shear at su	upport, V _{DL}	= 27.07	x 35.00 /2		=	473.7	KN	$V_{d} = wL/2$
•	Superir	mposed Dead La	ad Shear at supp	ort, V _{SDL}	= 8.81	x 35.00 / 2	=	154.2	KN	
B.2	LIVE LO		DL = 27.07	kN/m W _{SDL}	= 8.81	kN/m				
	The ca the de	nriageway width ock shall carry two	is 7.32m curb to cu p-lanes.	urb. AASHTO sp	ecifies a clea	ar lane width of 5	5.4m,	thus		Manual 1st Ed. Sect 3.4.2
	The dis	tribution of whee	el loads for two traf	fic lanes for T-ł	beams shall b	e taken as S/1.82	29			DPWH Table 3-4
	•	Number of live la	oad wheel line	= 2.10	/ 1.829		=	1.148		AASHTO Table 3.23.1 (S/6 in ft.)
	•	Impact factor, I	= 15.24 /	(35.00 + 38	3.00)		=	0.209		DPWH Sect. 3.2.5.1
RATED	• BY :		DATE :		CHECKED BY	:		DATE :		

	DEPARTME	ENT OF PUBLIC	WORKS ANI	DHIGHW	AYS	BRIDGE I	: .	****	PAGE :	
	LOAD	RATING	CALCU	LATIC	ONS	BRIDGE	IAME :	PCDG S	IMPLE	
										NOTES
The live	load moments of	and shear valu	ues are take ad demand	n from th	e tables ir	n Appendix v be used i	III on this values ar	manual e pot evar	~+	
					anon may	be used i	values ar	e noi exuc	-1	
• 1	Max. MS18 mome	ent for 35	.00 m				=	1227.9	KN-m	
5	span without imp	act/whel line								
• 1	Thus MS18 mome	ent with	M., =	(1 148)	(1 209)	(1227 90)	=	1704 1	KN-m	
-	Impact at midspo	an	, MLL	(1.140)	(1.207)	(1227.70)		1704.1		
•	Max. MS18 shear	at support/wl	neel line				=	148.8	KN	
• 1	Thus, MS18 shear		V ₁₁ =	(1.148)	(1.209)	(148.80)	=	206.6	KN	
OAD DEM	ANDS ON DIFFER	ENT SECTIONS	OF CONCR	ete i gire	DER					
	estimated load di	EMANDS AT GIR	DER SECTIONS	5 (MS18)						
Γ			Moment (k	N-m)	Shear (kN)				
	LOADI	NG	At Midsp	an	At Suppor	, †				
[Dead load	dlaad	4145.0		473.7					
	live Load + Impac	t 1000	1704.	1	206.6					
L										
C	Description	Area (m ²)	Moment of Inertia	f Y _{bot}	Girder m)	Y _{top} Girder	Y _{top} SI	ab		
		()	(m ⁴)	, v	,	()	()			
For Dec	ad Load	0.645	0.214	0.	804	0.796	NA	2		
For (SD	DL) and (LL+I)	1.065	0.419	1.	157	0.443	0.643	3		
LOAD S	STRESS CALCUL esses at different f $\sigma =$	ATIONS iber locations $\frac{P}{A} \pm$	are calculo Mc y / I	ited using	9					
The sum	nmary of results c	at Midspan are	e shown in th	ne table l	below.					
			an Ca atlana							
Estima	ted Stress Dem	ands at Gird	er sections							
Estima	ted Stress Dem	ands at Gird		Stresse	es in the P	CI Girder (1	Apa)	of		
Estima	ted Stress Dema	ands at Gird G	Top Co	Stresse oncrete ber	es in the Po Bottom C Fib	Cl Girder (<i>I</i> Concrete er	Apa) Centroid Composi	of te		
Estima Dead L	ted Stress Dem LOADIN oad (Self + Slab)	ands at Gird G	Top Co Fil	Stresse oncrete ber 5.44	es in the PC Bottom C Fib -15	Cl Girder (<i>I</i> concrete er .61	Apa) Centroid Composi 6.85	of te		
Estima Dead L Prestres	LOADIN LOADIN oad (Self + Slab) is (Pef = 5270 kN)	ands at Gird	Top Co File -5	Stresse oncrete ber 5.44 5.66	es in the PC Bottom C Fib -15. 22.	CI Girder (<i>I</i> concrete er .61 14	Apa) Centroid Composi 6.85 2.03	of te		
Estima Dead L Prestres Superin	LOADIN LOADIN oad (Self + Slab) is (Pef = 5270 kN) nposed Dead Loo	ands at Gird	Top Co Fil 15 -5	Stresse oncrete ber 5.44 5.66 .42	Bottom C Fib -15 22. -3.	Cl Girder (<i>I</i> concrete er .61 14 73	Apa) Centroid Composi 6.85 2.03 0.00	of te		
Estima Dead L Prestres Superim Live Loc	LOADING LOADING oad (Self + Slab) ss (Pef = 5270 kN) nposed Dead Log ad	ands at Gird G ad	Top Co Fil 15 -5 1	Stresse oncrete ber 5.44 5.66 .42 .80	Bottom C Fib -15. 22. -3. -4.	Cl Girder (<i>I</i> concrete er 61 14 73 71	Ара) Centroid Composi 6.85 2.03 0.00 0.00	of te		
Estima Dead L Prestres Superin Live Loo	LOADIN LOADIN oad (Self + Slab) is (Pef = 5270 kN) nposed Dead Loo ad	ands at Gird G ad	Top Co Fil 15 -5 1	Stresse oncrete ber 5.44 5.66 .42 .80	Bottom C Fib -15. 22. -3.: -4.	Cl Girder (<i>I</i> concrete er 61 14 73 71	Ара) Centroid Composi 6.85 2.03 0.00 0.00	of te		
Estima Dead L Prestres Superim Live Loc	LOADING LOADING oad (Self + Slab) is (Pef = 5270 kN) nposed Dead Log ad	ands at Gird	Top Co Fil 15 -5 1	Stresse oncrete ber 5.44 5.66 .42 .80	es in the P0 Bottom C Fib -15. 22. -3. -4.	Cl Girder (<i>I</i> concrete er .61 14 73 71	Ара) Centroid Composi 6.85 2.03 0.00 0.00	of te		
Estima Dead L Prestres Superim Live Loo	LOADING LOADING oad (Self + Slab) is (Pef = 5270 kN) inposed Dead Log ad	ands at Gird G ad	Top Co Fil 15 -5 1	Stresse oncrete ber 5.44 6.66 .42 .80	es in the PC Bottom C Fib -15. 22. -3. -4.	Cl Girder (<i>I</i> concrete er 61 14 73 71	Ара) Centroid Composi 6.85 2.03 0.00 0.00	of te		
Estima Dead L Prestres Superin Live Loo	ted Stress Dem LOADIN oad (Self + Slab) is (Pef = 5270 kN) nposed Dead Loo ad	ands at Gird G ad	Top Co Fil 15 -5 1	Stresse oncrete ber 5.44 6.66 .42 .80	es in the PC Bottom C Fib -15 22. -3. -4.	Cl Girder (<i>I</i> concrete er .61 14 73 71	Ара) Centroid Composi 6.85 2.03 0.00 0.00	of te		

	DEPARTMENT OF PUBLI	C WORKS AND HIGHWAYS	BRIDGE ID :	**** PAGE :	
	LOAD RATING	CALCULATIONS	BRIDGE NAME :	PCDG SIMPLE	
Street Street	DEPARTMENT OF PUBLI LOAD RATING sses due to Dead Load Top Concrete Fiber Section Concrete Fiber Centroid of Composite sses due to Prestress Top Concrete Fiber Centroid of Composite sses due to Superimposed Def Top Concrete Fiber Sectiom Concrete Fiber Sectiom Concrete Fiber Sectiom Concrete Fiber Sectiom Concrete Fiber Sectiom Concrete Fiber Centroid of Composite Sses due to Live Load Top Concrete Fiber Soltom Concrete Fiber Stab Centroid of Composite Stab Centroid of Composite Stab N.A. of Girde	C WORKS AND HIGHWAYS CALCULATIONS = $4,145.0 \times 0.796 / 0.214 / 1000$ = $4,145.0 \times (-0.804) / 0.214 / 1000$ = $15.44 - (15.44 - (-15.61) \times (0.443)$ = $(5270 / 0.645 - 5270 \times (0.804 - 0)$ = $(5270 / 0.645 + 5270 \times (0.804 - 0)$ = $(5270 / 0.645 + 5270 \times (0.804 - 0)$ = $-5.66 - (-5.66 - 22.14) \times (0.443/1.6)$ Pad Load = $1,349.0 \times 0.443 / 0.419 / 1000$ = $1,349.0 \times (-1.157) / 0.419 / 1000$ = $1,704.1 \times 0.443 / 0.419 / 1000$ = $1,704.1 \times 0.443 / 0.419 / 1000$ = $1,704.1 \times (-1.157) / 0.419 / 1000$ = $1,704.1 \times (-1.157) / 0.419 / 1000$ = $1,80 - (1.80 - (-4.71) \times (0.443 / -1000)$ = $15.44 - 5.66$	BRIDGE ID : BRIDGE NAME : BRIDGE NAME :	**** PAGE : PCDG SIMPLE 15.44 Mpa -15.61 Mpa 6.85 Mpa) / 1000 -5.66 Mpa 2.14 Mpa 2.03 Mpa 1.42 Mpa -3.73 Mpa 0.00 Mpa 1.80 Mpa -4.71 Mpa 0.00 Mpa 1.80	NOTES
1800	200 796 804 PCI Girder STRESSES A	T SECTION C (MIDSPAN) OF G	1.42 22.14 -3.73 stress SDL IRDER	1.80 -4.71 Live Load	
RATED BY :	DATE :	CHECKED BY	:	DATE :	

1		DEPAR	TMENT OF PUBLIC WO	RKS AND HIGHV	VAYS	BRIDGE ID	: **** PAGE	E :
1		LOAD	RATING CA	LCULATI	ONS	BRIDGE NAME	: PCDG SIMPLE	
								NOTES
C. LC	DAD RA	TING UNDE	R SERVICEABILITY ER STRENGTH LIMIT	LIMIT STATE B STATE BY LO	ALLOWA	BLE STRESS MI R METHOD (LF	ethod (ASM) FM)	
C.1	CAPAC	CITY CALCULA	TIONS					
	C.1.1	MOMENT	CAPACITY AT MIDSPAI	N				
	The ac ⁻	tual area of p	restressing steel can k	e obtained fro	m as-built pla	ans.		
	Howev	er in the abse	nce of as-built darwir	ngs, the followin	ig approach	can be used.		
	Assume	e total loss inc	luding creep loss to b	e	,	1570.0.1.4		
	$\sigma_{LOSS} =$	158.1 Mpa	with t _{u(Tendons)}	= 1860.0 Mpa	ty =	1570.0 Mpa		
	Therefo Prestres	ore, ssing steel are	ea = Wor Effect	king Force ctive Stress	$= \frac{5}{(0.75 \times 1)}$ = 4261 mm ²	5270 860 - 158.1) ×	(1000)	
	h " = '	2100 mm t	$= 200 \mathrm{mm}$ b $= 2$	03 mm				
	$d_p = 1$	800 - 100 =	1700 mm , f'c (girde	er) = 38 Mpa ,	f'c (slab) =	24.2 Mpa		
	k =	2 x (1.04 - fy	/ fu) = 2 x (1.04 - 157	0.0 / 1860.0) = ().39			
	β (ς	girder) = 0.85 -	0.05 / 7 x (f'c - 28) = [in case of, 56 >	0.85 - 0.05 / 7 x f'c > 28 ==> β =	(38 - 28) = 0 = 0.85 - 0.05 /	.7786 7 x (f'c - 28)]		
	β (s	lab) = 0.85	[in case of, f'c <	28 ==> β = 0.85]			
	Ac	(girder) = b _w x	: (N.A t _s) = 203 x (23	31.2 - 200) = 6,3	33.6 mm²	(N.A.: Neu	utral axis location)	
	Ac	(slab) = b _{eff} x	t _s = 2100 x 200 = 420,0	00 mm ²				
	ß	averaae) =	[f'c (slab) x Ac	(slab) x β (slab)	+ f'c (girder	x Ac (girder) x β	(girder)]	
	PT	avorago,	[f'c (slab) x Ac (slab) + f'c (girde	r) x Ac (girder)]		
		= -	(24.2 × 420,000 × (24.2 × 42	0.85 + 38 x 6333 0,000 + 38 x 633	.6 x 0.7786) 3.6)	= 0.848348		
	C (s	slab) =	[0.85 x f'c (slab)	Αμ x τυ x β (slab) x b _c #	+ k x Ap x fu	/ d _n]		
				40/1 v 1 0/0	1	р .		
		=	[0.85 x 24.2 x 0.85 x	4,201 x 1,860 2,100 + 0.39 x 4	,261 x 1,860	/ 1,700] = 20	5.6 mm	
	fps	= fu x [1 - k x (C (slab) / d _p] = 1,860	x [1 - 0.39 x 205	.6 / 1,700] =	1771.9 Mpa		
	а	=β (slab) x C	(slab) = 0.85 x 205.6 =	174.8 mm				
	S :	= Ap x fps x (c	d _p - a / 2) / 10 ⁻⁶ = 4,26	olx 1,771.9 x (1,	700 - 174.8 / 2	2) / 10-6 = 12,174	\$ kN-m	
	<u> </u>		[Ap x fu - 0.85 :	x t _s x β (average	e) x { f'c (slab) x b _{eff} - f'c (girde	er) x b _w }]	
	C (g	gırder) =	[0.85 x f'	c (girder) x β (a	verage) x b _v	, + k x Ap x fu / d _r	p]	
			[4,261x 1,860 - 0.8	35 x 200 x 0.8483	48 x { 24.2 x 2	2,100 - 38 x 203 }]		
		= -	[0.85 x 38 x 0.8	348348 x 203 + 0	.39 x 4,261 x	1,860 / 1,700]	= 231.2 mm	
				I_^				
	. ועי		UNIL .	C		•	UNIL .	

	DEPARTMENT OF PUBLIC V	NORKS AND HIGHWAYS	BRIDGE ID :	**** PAGE	:
	LOAD RATING C	CALCULATIONS	BRIDGE NAME :	PCDG SIMPLE	
					NOTES
fps :	= fu x [1 - k x C (girder) / d _p] = 1	,860 x [1 - 0.39 x 231.2 / 1,700]	= 1760.9 Mpa		
a	=β (average) x C (girder) = 0.84	18348 x 231.2 = 196.1 mm			
S =	= [Ap x fps x (d _p - a / 2)				
	+ 0.85 x β (average) x (f'c (s	lab) x b_{eff} - f'c (girder) x b_{w}) x t	s x (a / 2 - t _s / 2) } / 1	0-6	
:	= 4,261x 1,760.9 x (1,700 - 196.1 /	(2)			
:	+ 0.85 X 0.848348 X (24.2 X 2, = 12,007 kN-m <== Governing	100 - 38 x 203) x 200 x (196.1 / g Moment Capacity (< 12,174	2 - 200 / 2) } / 10 * kN-m)		
612		т			
C.1.2	SHEAR CAPACITY AT SUPPOR	1			
The AA	SHTO Design Specification requi	res that the design shear be ta	ken at a distance "d	" from	
the sup	port. However, shear at support	t may be used conservatively.	under DPW/H		
standa	ds had been used.				
	• The shear capacity of the co	oncrete section			
	$V_{c} = 0.05 \text{ Sart}(f'_{c}) \text{ b d}$	= 0.05 [Sart (38.00))] (203) (1.800 - 0	0.50) (1.00)	
		= 109.5 KN ==>> Ful	Capacity	(1100)	
•	Ine snear capacity of the sn	earreinforcement			Stirrups :
	Vs = 2 Av fy d_{eff} / S	= 2x(2x113.1) (415)	(1.800 - 0.050) / (200)	D12mm
		= 1642.7 KN			$A = 113.1 \text{ mm}^2$
	• The total shear capacity bec	comes			
	$V \cup = \phi (V C + V S)$	= 0.85 (109.5 + 16 = 1489.4 KN	642.7)		
C.2 LOAD R	ATING CALCULATIONS				
	d Dating Pasad on Sonviscoal	aility Limit State by ASM			
C.2.1 LUA	a kalling based on serviceal				
Serviceabi	ity conditions are given in the A	ASHTO Design Specifications			See Sect. 3.5
(Section 9.	5) and the AASHTO MCEB Man	ual (Sec. 6.6.3.3)			of this Manual
i. Using c	ompressive stress under all loac	combination:			
		$0 \neq f' = (Ed + Ec + Ec)$			This Manual
Locatio	n RF INV-COMALL =	FI	RF _{INV}	/-COMALL	Eq. 3.5-2
	0.6 (38) - (1544 + 142 + (-566) + 0.00)			
At Midsp	an =	1.80	=	6.44	
ii. Using c	ompressive stress of Live Load, H	half the prestressing and perm	anent dead load:		This Manual Fa. 3.5-3
Looch	PE	0.4 f'c - 0.5 (Fd + Fp + Fs			-q. 0.0-0
	IN INV-COMLIVE =	FI		-COMLIVE	
At Midsr	0.4 (38) - 0.5	(15.44 + 1.42 + (-5.66) + 0.00) =	5 33	
	<u> </u>	1.80	-	0.00	
RATED BY :	DATE :	CHECKED BY	:	DATE :	

Location At Midspan	KF INV-COMLIVE =	=	5.61 - 3.73 + -4.71	FI 22.14 + 0.0	0)	- KF	1.2	station in the second s	
. 2.2 Load Rat The general e RF = —	ing Based on St expression for the $\frac{\phi \operatorname{Rn} - \gamma_{D} D}{\gamma_{L} \beta_{L} L (1+1)}$	rength Limit Rating Factor wł	State by LFM is: nere y f f f	Λ ' _D : 1.3 ' _L : 1.3 b _L : 1.6 b _L : 1.0	0 0 7 for inver 0 for Oper	tory ating			
		LOAD RATIN	IG CALCULA	tions (lfm)				
Location	Description	Inventory I	Rating (Tons)		Ope	rating R	ating	(Tons)	
Midspan At Support	Moment Shear	12007-1.3 1.3(1.6 1489-1.3 1.3(1.6	(4145+1349) 7) (1704) (474+154) 57) (207)	— = 1.3 — = 1.5	2 <u>12007-1.</u> 1.3(1 0 <u>1489-1</u> 1.3(1	3(4145+ .00)(170 .3(474+1 .00)(207	1349) 4) 54) 7)	- = 2.20 - = 2.51	
	(Rc	LOAD RATIN	IG CALCULA	TIONS (LFN = 33 Metric) Tops)				
Location	Description	Inventory I	Rating (Tons)	- 55 Merrie	Ope	rating R	ating	(Tons)	
Midspan	Moment	1.32 x	33 = 43 .	4	2.20	x 3	3 =	72.5	
At Support this example, t e strength limit erform load pos	Shear he Rating Factors state are greater sting calculations	1.50 x (RF) for both than one (RF . Therefore, th	 33 = 49. the servicea > 1) so that he bridge ca 	6 bility limit s t there is no n safely co	2.51 tate and p need to arry the inten	x 3: ded tra	3 =	82.7 ads.	

1	Ň		DEPARTMENT	of Public Wo	ORKS AND H	HIGHWAYS	BF	RIDGE ID	: **** PA	GE :
-V		L	DAD RA	TING C	ALCUL	ATION	S BF	RIDGE NAME	: PCDG SIMPLE	
										NOTES
D. LC	DAD PC	STING AND	UNDER SER UNDER STRI e for load post	VICEABILIT ENGTH LIM	TY LIMIT ST IT STATE B to the abov	TATE BY A BY LOAD I	ALLOWA FACTOR	BLE STRESS METHOD (L g vehicles for	METHOD (ASM) FM) live load.	
D.1	DEMAN	ID FOR	CES FOR LOAD	Posting vei	HICLES					
	The live load moments and shears can be taken from Appendix III of the Manual corresponding to Types 1-1, 1-2 and 12-2 Posting Vehicles. For a 35.00 m span bridge, the Posting Live Load demands are:									
) (a la	ala.			LL Dist				I	
	ven		LL EIIECTS/V	sheer	LL DIST	Impact	Maria		Shoer /KNI	
	Typ	be	Moment	Shear	Factor		Mome	nt (KN-m)	Shear (KN)	
	Туре	1-1	695.45	81.46	1.148	1.209	96	5.19	113.06	
	Туре	1-2	1036.00	123.91	1.148	1.209	14	37.83	171.97	
	Туре	12-2	1261.27	156.27	1.148	1.209	17	50.48	216.88	
i. 	Using c Locatio	ompre	RF INV-COMALL	der all load c	combination 0.6 f'c	n: c - (Fd + Fp Fl) + Fs)		RF INV-COMALL	This Manual Eq. 3.5-2
	T	ype 1-1	=	0.6 (38) - (15	5.44 + 1.42 1.02	+ (-5.66) +	0.00)	=	11.37	
	At Midspa 1	ype 1-2	=	0.6 (38) - (15	5.44 + 1.42	+ (-5.66) +	0.00)	=	7.64	
	Ţ	уре 2-2	=	0.6 (38) - (15	5.44 + 1.42	+ (-5.66) +	0.00)	=	6.27	
ii.	Using c	ompre	ssive stress of I	ive Load, hc	alf the prest	ressing and	d perman	ent dead loa	d:	This Manual Eq. 3.5-3
_	Locati	on	RF INV-COMLIVE	=	U.4 †'C -	- U.5 (Fd + F Fl	-p + Fs)	F	RF INV-COMLIVE	
	T G	ype 1-1	=0	.4 (38) - 0.5 (15.44 + 1.42 1.02	2 + (-5.66)	+ 0.00)	=	9.42	
	At Midsp. 1	ype 1-2	=0	.4 (38) - 0.5 (15.44 + 1.42 1.52	2 + (-5.66)	+ 0.00)	=	6.32	
_	T	ype 2-2	=0	.4 (38) - 0.5 (15.44 + 1.42 1.85	2 + (-5.66)	+ 0.00)	=	5.19	
	BV ·			E ·		CHECK			DATE	

INTERIOR PCDG CONTINUOUS

A. GENERAL

BACK TO MENU

	A1. BRIDGE DESCRIPTION							
Bridge Loc	cation	REGION						
Bridge Na	me							
Bridge	Simple or Cor	ntinuous	С	Precast, Pr	estressed PC	I Girder Brid	dge	
Туре	Number of Sp	an	3					
Bridge Wid	dth (curb to cu	ırb) (m)	7.32					
Number of	f Lanes		2					
Bridge Ler	ngth (m)		35.000	35.000	35.000			=105.000m
Year Built			2000					
	Nos. of Girde	r	4	Superstruct	ure made co	ontinuous fo	r live Ioadin	g
Structure	Girder Spacing (m)		2.100	on centers				
	Substructure		Concrete	bents and c	Ibutments			
Wearing thickness (r		m)	50					
Course	material		Asphalt					
		f'c (Girder))		38	MPa		
		f'c (Slab)	(Slab)		24.2	MPa		
Nator on F	land	Ultimate St	rength of Te	endons fu	1860	MPa		
NOIES ON F	IGHS	Working Fo	orce		6750	kN (Effective after losses)		
		Centroid c	of PC Tendo	ns	100	mm (from soffit at Midspan)		
		Controla c		115	885	mm (from soffit at Anchorage)		
		Weight of	barrier rail	Wbr =	13.0	KN/m		
Accumptio	n	fy (Reinfor	cing Bars)		415	Мра		
Assumptio	11	Concrete	Unit Weight	Wu =	24.0	KN/m ³		
		Asphalt Un	it Weight W	/a =	22.0	KN/m ³		
Others		Rating Live	e Load is AA	SHTO MS18	(HS20-44)			

Material	Year of	foorfu	fc or fs				
Mulenui	Construction	I C OF TY	Inventory	Operating	Posting	Posting 6.9 8.3 11.0 *pc 12.4 124.1 137.9 137.9	
	Prior to 1959	17.2	6.9	10.3	6.9		
Concrete	after 1959	20.7	8.3	13.1	8.3		
Conciele	1977 to 1981	27.6	11.0	16.5	11.0	*рс	
	after 1981	31.0	12.4	18.6	12.4	*pc	
	Prior to 1954	227.5	124.1	172.4	124.1		
Pobar	after 1954	275.8	137.9	193.1	137.9]	
Kebul	Grade 50	344.7	137.9	224.1	137.9	*pc	
	Grade 60	413.7	165.5	248.2	165.5	*pc	

A2. BRIDGE LAYOUT AND SECTION

SUPERSTRUCTURE CROSS SECTION

SECTION AT MIDSPAN

SECTION AT PIER SUPPORT

GIRDER			
Girder Height	1.600		
Dimension	b	h	
Slab	2.100	0.2	*1.00 (Modulas Ratio)
1161	1.067	0.127	
	0.330	0.076	
ung	0.102	0.076	
	0.102	0.102	
Web	0.203	1.270	
1.0	0.254	0.254	
LIIG	0.711	0.203	

B. DEMAND FORCES

B1. DEAD LOAD CALCULATIONS

B1.1 INPUT								
	Area of Girder (m ²)	0.653						
	Span Length (m)	35.000						
	Composite Girder Height (m)	1.80						
FOR	Girder Height (m)	1.60						
DEAD	Slab thickness (m)	0.200						
LOAD	Slab Spacing (m)	2.100						
	Weight of Diaphram (kN/m)	1.5						
	Weight of Barrier Rail (kN/m)	13						
	Number of Girder (nos.)	4						

B1.2 DEAD LOAD CALCULATIONS						
Dead Load Moment at Midspan M _{DL} (kN-m)	4173.5					
Dead Load Shear at Support V_{DL} (kN)	477.0					

B2. FORCE DEMAND CALCULATIONS

B2.1 INPUT	
Number of Lanes	2
Fraction DF	1.148

	B2.2 FORCE DEMAND CALCULATIONS									
Conduc	Conducting a Structural Analysis, the load demands for the PCDG should be obtained									
separately and input the necessary load demands in the Table below.										
Description	n	C (0.5L)	At Pier Support							
	Dead load (kN-m)		0.0							
Moments	Superimposed Dead load (kN-m)	594.7	-792.9							
	MS18 moment with Impact (kN-m)	2441.4	-2770.7							
	Dead load (kN)	0.0	-477.0							
	Superimposed Dead load (kN)	0.0	-135.9							
Shoars	MS18 max. positive shear force (kN)	202.9	67.0							
Shears	MS18 max. negative shear force (kN)	-202.9	-465.3							
	MS18 max. positive moment for shear (kN-m)	2319.3	457.9							
	MS18 max. negative moment for shear (kN-m)	-2319.3	-449.8							

B3. SECTION PROPERTIES CALCULATION									
Load Condition	A (m ²)	lz (m ⁴)	Y _b (m)	Y _t (m)	Y _t slab (m)				
For Dead Loads	0.653	0.217	0.812	0.788	NA				
For Live Loads	1.073	0.420	1.159	0.441	0.641				

B4. STRESS CALCULATIONS

(1) Stress at Midspan							
	Stresses in the PC Girder (Mpa)						
Loading	Top Concrete	Bottom Concrete		Centroid of			
	Fiber	Fib	Fiber		oosite		
Dead Load (Self + Slab)	15.17	-15.	.63	6.	69		
Prestress (Pef=6750kN)	-7.13	28.	32	2.	63		
Superimposed Dead Load	0.62	-1.6	64	0.	00		
Live Load	2.56	2.56 -6.74		0.	00		
Live Load Moment for Shear	2.43 -6.40		40	0.00			
(2) Stress at Pier Support	(2) Stress at Pier Support						
		Stresses in the PC Girder (Mpa)					
Loading		Top Concrete Fiber	Bottom Concrete Fiber	Centroid of Composite	Top of Slab		
Dead Load (Self + Slab)	0.00	0.00	0.00	0.00			
Prestress (Pef=6750kN)	12.13	8.48	11.13	0.00			
Superimposed Dead Load		-0.83	2.19	0.00	-1.21		
Live Load		-2.91	7.65	0.00	-4.23		
Live Load Moment for Shear		-0.47	1.24	0.00	-0.69		

C. LOAD RATING BY LOAD FACTOR METHOD

C1. CAPACITY CALCULATIONS

C1.1 MOMENT CAPACITY at MIDSPAN		
Assumed total prestressing loss including creep $\sigma_{ ext{LOSS}}$ (Mpa)	204.6	
Ultimate Strength of Tendons fu (Mpa)	1860	
Web Width bw (mm)	203	
Prestressing Steel Area As* (mm ²)	5670	
Section Loss (%)	0	
Total Assumed Area of Steel As(mm2)	5670	
Effective width of deck , beff (mm)	2100	
Centroid of Prestressing Steel from top of deck , d (mm)	1700	
Yield Strength of Tendons fy (Mpa)	1570	
k=2(1.04-fy/fu)	0.39	Cinput
Neutral axis location (mm)	560.6	560.6
Moment Capacity at Midspan R (kN-m)	14284	

C1.2 MOMENT CAPACITY at PIER SUPPORT				
Ultimate Strength of Rebar fy (Mpa)	415			
Number of Rebars (nos.)	15			
Diameter of Main Rebar (mm)	36			
Area of one main rebar Φs (mm2)	1017			
Concrete Cover (mm)	38			
Resistance Reduction Factor	0.90			
Rebars Area As (mm ²)	15255			
Section Loss (%)	10			
Total Assumed Area of Steel As(mm2)	13730			
Centroid of Rebar from top of compression fiber, d (mm)	1744			
Web Width bw (mm)	711.0			
Rebar Ratio ρ = As / (beff x d) ρ	0.01107			
Neutral axis location (mm)	608.1			
Moment Capacity at Face of Support R (kN-m)	8045			

C1. CAPACITY CALCULATIONS

C1.3 SHEAR CAPACITY at MIDSPAN				
Diameter of Stirrups (mm)	12			
Area of Stirrups (mm²)	113			
Spacing of Stirrups (mm)	250			
Nominal Shear Capacity Factor Φ	0.85			
Web Width bw (mm)	203			
Depth of Shear Cracks (mm)	40			
The Reduction Factor due to Shear Cracks	0.80			
Cracking Moment (kN-m)	3775.4			
Factored Total Moment Mmax (kN-m)	11231.6			
Factored Shear Force Vi (kN)	440.3			
Nominal Shear Strength Vci (kN)	254.4			
Nominal Shear Strength Vcw (kN)	1474.5			
Nominal Shear Strength provided by concrete Vc (kN)	204.2			
Nominal Shear Strength provided by Rebar Vs (kN)	637.8			
Shear Capacity $V_U = \Phi(V_C + V_S)$ (kN)	715.7			

C1.4 SHEAR CAPACITY at PIER B			
Diameter of Stirrups (mm)	12		
Area of Stirrups (mm ²)	113		
Spacing of Stirrups (mm)	150		
Nominal Shear Capacity Factor Φ	0.85		
Web Width bw (mm)	203		
Depth of Shear Cracks (mm)	30		
The Reduction Factor due to Shear Cracks	0.85		
Cracking Moment (kN-m)	-819.2		
Factored Total Moment Mmax (kN-m)	-2006.8		
Factored Shear Force Vi (kN)	-1806.4		
Nominal Shear Strength Vci (kN)	1350.4		
Nominal Shear Strength Vcw (kN)	1836.5		
Nominal Shear Strength provided by concrete Vc (kN)	1150.9		
Nominal Shear Strength provided by Rebar Vs (kN)	1090.5		
Shear Capacity Vu	1905.1		

C2. LOAD RATING CALCULATIONS

C2.1 LOAD RATING BASED ON SERVICEABILITY LIMIT STATE							
(1) USING COMPRESSIVE STRESS							
	Section C	Pier Support B					
For Strength Factor		0.6					
For Strength Factor		0.4					
For Dead Load Factor		0.5					
Concrete Compressive Stress	38						
Dead Load Stress	15.80	2.19					
Prestress after all losses	-7.13	8.48					
Secondary Prestress	0.00	0.00					
Live Load stresses including Impact	2.56	7.65					
Using Compressive Stress Under All Load Combination	5.52	1.59					
Using Compressive Stress of Live Load	4.24	1.29					
(2) USING ALLOWABLE TENSION STRESS							
Dead Load Stress	-17.27	-0.83					
Prestress after all losses	28.32	12.13					
Secondary Prestress	0.00	0.00					
Live Load stresses including Impact	-6.74	-2.91					
Using the Allowable Tension in Concrete	2.10	4.95					

C2.2 LOAD RATING BASED ON STRENGTH LIMIT STATE						
Dead Load Factor		1.3				
Live Load factors Inventory Operating			2	.17		
		1.3				
		Section C (ction C (at Midspan Section B (Suppor		(Support)	
		Moment	Shear	Moment	Shear	
Moment and Shear Capacity		14284	716	-8045	-1905	
Moment and Shear due to Dead Load		4174	0.00	0.00	-477	
Moment and Shear due to Superimposed Dead Load		595	0.00	-793	-136	
Moment and Shear due to Live Load		2441	203	-2771	-465	

C2.3 LOAD RATING CALCULATIONS							
Description		Moment Shr		ear			
		Inventory	Operating	Inventory	Operating		
Derling Frister	Section C (Midspan)	1.53	2.55	1.63	2.71		
Kaling racio	Pier B (Support)	1.51	1.95	1.10	1.83		
Rating Live Load (MS18) (Metic Tons	Weight of vehicle		3	3.0			
Load Pating Calculations	Section C (Midspan)	50.4	84.1	53.6	89.5		
	Pier B (Support)	49.8	64.3	36.2	60.5		

			τ.	
		x		
	_	<u> </u>		

C2.3 SUMMARY OF RATING FACTOR AND LOAD RATING							
Weight of Vehicle (Metric Tens) 23 Section C Pier Support B							oport B
weight of vehicle (Methic Toris)			RF	LR	RF	LR	
	Sonviceachility	Compression	All Load	5.52	182.1	1.59	52.3
Rating Factor	Limit State	Compression	Live Load	4.24	140.0	1.29	42.5
		Allowable	Tension	2.10	69.2	4.95	163.2
and	and	Momont	Inventory	1.53	50.4	1.51	49.8
Load Rating Strength Limit State	Strongth Limit State	Momeni	Operating	2.55	84.1	1.95	64.3
	Silengin Linii Sidie	Shoar	Inventory	1.63	53.6	1.10	36.2
	Shedi	Operating	2.71	89.5	1.83	60.5	
Minimum I	Rating Factor and Load	l Rating		1.53	50.4	1.10	36.2

Depend on the minimum value of Rating Factor > 1 or <1 , instruction in the below cell is automatically shown Return to GENERAL Click following the above instruction Return to GENERAL Load Posting

D. LOAD POSTING BY LOAD FACTOR METHOD

D1. DEMAND FORCES FOR LOAD POSTING VEHICLES

D1. DEMAND FORCES FOR LOAD POSTING VEHICLES							
Conducting a Structural Analysis, the load demands for the PCDG should be							
obtained separately and in	obtained separately and input the necessary load demands in the Table below.						
Description			Section C	Pier Support B			
Posting Vehicle Moment and Shear		Type 1-1	822.1	-448.7			
	Moment	Type 1-2	1219.9	-702.9			
		Type 12-2	1447.3	-934.3			
		Type 1-1	60.3	-123.2			
	Shear	Type 1-2	85.5	-191.8			
		Type 12-2	84.1	-248.8			

D2. POSTING RATING CALCULATIONS

D2.1 POSTING RATING BASED ON SERVICEABILITY LIMIT STATE					
(1) USING COMPRESSIVE STRESS					
Description		Section C	Pier Support B		
For Strength Factor		(Э.6		
For Strength Factor		(0.4		
For Dead Load Factor		(0.5		
Concrete Compressive Stress			38		
Dead Load Stress		15.80	2.19		
Prestress after all losses		-7.13	8.48		
Secondary Prestress		0.00	0.00		
	Type 1-1	0.86	1.24		
Live Load stresses including Impact	Type 1-2	1.28	1.94		
	Type 12-2	1.52	2.58		
Using Comprositive Strong	Type 1-1	16.38	9.79		
Under All Load Combination	Type 1-2	11.04	6.25		
onder Air Lodd Combination	Type 12-2	9.31	4.70		
	Type 1-1	12.60	7.96		
Using Compressive Stress of Live Load	Type 1-2	8.49	5.08		
	Type 12-2	7.16	3.82		
(2) USING ALLOWABLE TENSION STRESS					
Dead Load Stress		-17.27	-0.83		
Prestress after all losses		28.32	12.13		
Secondary Prestress		0.00	0.00		
	Type 1-1	-2.27	-0.47		
Live Load stresses including Impact	Type 1-2	-3.37	-0.74		
	Type 12-2	-4.00	-0.98		
	Type 1-1	6.23	30.54		
Using the Allowable Tension in Concrete	Type 1-2	4.20	19.50		
	Type 12-2	3.54	14.67		

D2. LOAD RATING CALCULATIONS

D2.2 POSTING RATING BASED ON STRENGTH LIMIT STATE									
Dead Load Factor	1.3								
Live Load factor	Inventory		2	.17					
	Operating		1.3						
	Section C (at Midspan	Section B (Support)						
	Moment	Shear	Moment	Shear					
Moment and Shear Capacity		14284	716	-8045	-1905				
Moment and Shear due to Dead Load		4174	0.00	0.00	-477				
Moment and Shear due to Superimposed Dead	d Load	595	0.00	-792.9	-136				
	Type 1-1	822	60	-449	-123				
Moment and Shear due to Live Load	Type 1-2	1220	86	-703	-192				
	Туре 12-2	1447	84	-934	-249				

D2.3 POSTING RATING CALCULATIONS									
Description	Description					Shear			
Description				Inventory	Inventory Operating		Operating		
	Cootiere C	Type 1-1	4.53	7.57	5.47	9.13			
		Section C	Type 1-2	3.05	5.10	3.86	6.44		
Dating Easter		(Micspart)	Type 12-2	2.57	4.30	3.92	6.55		
Rating Factor		D' D	Type 1-1	7.20	12.02	4.15	6.92		
		Pier B	Type 1-2	4.60	7.68	2.66	4.45		
		(300001)	Type 12-2	3.46	5.77	2.05	3.43		
Postting Live Logd		Type 1-1		17.0					
(Metic Tons)	Weight of vehicle		Type 1-2	27.0					
		Ту		38.0					
		Section C	Type 1-1	77.0	128.6	93.0	155.2		
	(Midspan)	Type 1-2	82.5	137.7	104.2	173.9			
Load Pating Calculation	(Micispan)	Type 12-2	97.8	163.3	149.0	248.8			
Loud Kulling Calcolation	Pior P	Type 1-1	122.5	204.4	70.5	117.6			
	(Support)	Type 1-2	124.2	207.3	71.9	120.0			
	(3000001)	Type 12-2	131.5	219.4	78.0	130.2			

D2.3 SUMMARY OF POSTING RATING FACTOR AND LOAD RATING								
		Secti	ion C	Pier Su	pport B			
				RF	LR	RF	LR	
(1) POST	ING VEHICLE TYPE 1	Weight c	of Vehicle	17 (Metoric Tons)				
Rating	Serviceability	Comprossion	All Load	16.38	278.5	9.79	166.4	
		Compression	Live Load	12.60	214.1	7.96	135.3	
Factor		Allowable	Tension	6.23	105.9	30.54	519.3	
and		Momont	Inventory	4.53	77.0	7.20	122.5	
Load	Strangth Limit State	Momeni	Operating	7.57	128.6	12.02	204.4	
Rating	Sherigin Linni Sidle	Shoar	Inventory	5.47	93.0	4.15	70.5	
		Shear	Operating	9.13	155.2	6.92	117.6	
Minimum F	Rating Factor and Load	d Rating		4.53	77.0	4.15	70.5	
(2) POST	ING VEHICLE TYPE 1	-2		Weight of Vehicle		27 (Metoric Tons)		
	Serviceability Limit State	Compression	All Load	11.04	298.1	6.25	168.7	
Ratina			Live Load	8.49	229.2	5.08	137.2	
Factor		Allowable Tension		4.20	113.3	19.50	526.5	
and	Strength Limit State	Moment Shear	Inventory	3.05	82.5	4.60	124.2	
Load			Operating	5.10	137.7	7.68	207.3	
Rating			Inventory	3.86	104.2	2.66	71.9	
			Operating	6.44	173.9	4.45	120.0	
Minimum F	Rating Factor and Load	d Rating		3.05	82.5	2.66	71.9	
(3) POST	ING VEHICLE TYPE 1	2-2		Weight of Vehicle		38 (Metoric Tons)		
		Comprossion	All Load	9.31	353.7	4.70	178.6	
Ratina	ServicedDility	Compression	Live Load	7.16	271.9	3.82	145.3	
Factor		Allowable	Tension	3.54	134.4	14.67	557.4	
and		Moment	Inventory	2.57	97.8	3.46	131.5	
Load	Strength Limit State	MONEIII	Operating	4.30	163.3	5.77	219.4	
Rating		Cla a an	Inventory	3.92	149.0	2.05	78.0	
		SHECH	Operating	6.55	248.8	3.43	130.2	
Minimum F	Rating Factor and Load	d Rating		2.57	97.8	2.05	78.0	

SUMMARY OF RESULTS FOR LOAD POSTING									
Vehicle Type	Vehicle	SECTION C		PIER SU	Load				
	Weight (Metric Tons)	Rating Factor	Load Rating	Rating Factor	Load Rating	Posting (Tons)			
M\$18	33.0	1.53	50.4	1.10	36.2	33T			
Type 1-1	17.0	4.53	77.0	4.15	70.5	17T			
Type 1-2	27.0	3.05	82.5	2.66	71.9	27T			
Type 12-2	38.0	2.57	97.8	2.05	78.0	38T			

E. SUMMARY OF RESULTS FOR LOAD POSTING

END AND GO TO DECK SLAB

		DEPARTMENT OF PUBLIC WORKS AND HIGHW	/AYS	BRIDGE ID	:	****	PAGE	:			
		LOAD RATING CALCULATION	ONS	BRIDGE NAME	:	PCDG C	ONTINU	OUS			
								NOTES			
B. D ^{B.1}	 B. DEMAND FORCES B.1 DEAD LOAD CALCULATIONS The dead loads considered in the calculations include (1) Girder self-weight, (2) Fillet/haunch, (3) Tributary area of slab, (4) Barrier rails (Assumed to be equally distributed among girders). (5) Wearing course. 										
• • •	Self-weight Slab Weigh Weight of E Barrier rail Wearing co	of girder = (0.6532m2) (24 KN/m t (Tributary) = (0.20m) (2.10m) (24 KN/m biaphram = 2 (13.0/4) = 2 (13.0/4) • Total Uniform Load of Interior (• Total Uniform Dead Load of C • Total Uniform Superimposed D	1 ³) 1 ³) Girder, w Birder, w _{DL} Dead Load c	f Girder, w _{sDL}	= = = = =	15.680 10.080 1.50 6.50 2.31 36.07 27.260 8.81	KN/m KN/m KN/m KN/m KN/m KN/m				
•	Dead Load	Moment at Midspan, M_{DL} = 27.26 x	35.00 ²	/8	=	4173.5	KN-m	$M_d = wL^2/8$			
• Dead Load Shear at support, V_{DL} = 27.26 x 35.00 /2 = 477.0 KN W_{DL} = 27.26 kN/m W_{SDL} = 8.81 kN/m											
B.2	LIVE LOAD of The carriag the deck sh	CALCULATIONS eway width is 7.32m curb to curb. AASHTO spe Iall carry two-lanes. tion of wheel loads for two traffic lanes for T-be	cifies a clea eams shall b	r lane width of e taken as \$/1.8	5.4m, 329	thus		Manual 1st Ed. Sect 3.4.2 DPWH			
	NumImpo	aber of live load wheel line = $2.10 / 100 = 15.24 / (35.00 + 38.00)$	1.829 00)		=	1.148 0.209		Table 3-4 AASHTO Table 3.23.1 (S/6 in ft.) DPWH Sect. 3.2.5.1			
Co se	onducting a parately and	Structural Analysis, the load demands for the P I input the necessary load demands in the Tab	CDG Contir le below.	nuous should be	e obto	ained					
	DescriptionAt MidspanAt Pier Support0.5L1.0L										
	Dead load moments, KN-m4173.50.0MomentsSuperimposed Dead load moments, KN-m594.7-792.9M\$18 moments with impact, KN-m2441.4-2770.7										
	Shears	Dead load shears, KN Superimposed Dead load moments, KN-m MS18 max. positive Shear force, KN MS18 max. negative Shear force, KN MS18 max. positive moment, KN-m MS18 max. negative moment, KN-m	2 -2 2 -2	0.0 0.0 002.9 202.9 319.3 319.3	-477. -135. 67.0 -465. 457.9 -449.	.0 .9 .0 .3 .3 .9 .8					
RATED	DBY :	DATE : CI	HECKED BY	:		DATE :					

1		DEPAR	iment of public woi	RKS AND HIGHW	/AYS	BRIDGE ID	: **** PAC	Æ:		
1		LOAD	RATING CA	LCULATIO	ONS	BRIDGE NAME	: PCDG CONTIN	IUOUS		
								NOTES		
C. LC	DAD RA	ating under And unde	R SERVICEABILITY	LIMIT STATE B	Y ALLOWA AD FACTO	ABLE STRESS M OR METHOD (L	ethod (ASM) FM)			
C.1	CAPAC	CITY CALCULAT	IONS							
	C.1.1	MOMENT C	CAPACITY AT MIDSPAN	N						
	The act	tual area of pr	restressing steel can b	e obtained fror	m as-built pl	ans.				
	Howev	er in the abse	nce of as-built darwin	ngs, the followin	g approach	can be used.				
	Assume	e total loss incl	uding creep loss to b	e - 1940.0 Mpg	fu —	1570.0 Mpg				
	U LOSS -	204.0 Mpu	WIIII I _u (Tendons)	- 1860.0 Mpd	iy –	1370.0 Mpu				
	Therefo Prestres	ore, ssing steel ared	a = Worl	king Force ctive Stress =	(0.75 x ² 5670 mm ²	5750 860 - 204.6) x	: (1000)			
	h - (0100 mana t	- 200 mana h - 20	02 mana						
	$D_{eff} = 1$ $d_p = 1$	2100 mm , t_s 800 - 100 = 1	= 200 mm , b _w = 20 1700 mm , f'c (girde	er) = 38 Mpa ,	f'c (slab) =	: 24.2 Mpa				
	k =	2 x (1.04 - fy	/ fu) = 2 x (1.04 - 1570	0.0 / 1860.0) = 0).39					
	β (g	girder) = 0.85 -	0.05 / 7 x (f'c - 28) = [in case of, 56 > 1	0.85 - 0.05 / 7 x f'c > 28 ==> β =	(38 - 28) = (0.85 - 0.05 /).7786 7 x (f'c - 28)]				
	β (sl	lab) = 0.85	[in case of, f'c < :	28 ==> β = 0.85 j]					
	Ac	(girder) = b _w x	$(N.A t_s) = 203 \times (56)$	50.6 - 200) = 73,5	201.8 mm ²	(N.A.: Ne	utral axis location)			
	Ac	(slab) = b _{eff} x	t _s = 2100 x 200 = 420,0	00 mm ²						
	β (α	average) = -	[f'c (slab) x Ac	(slab) x β (slab) slab) x Ac (slab)	+ f'c (girder) + f'c (airde) x Ac (girder) x (r) x Ac (girder) 1	β (girder)]			
			1.24.2 × 420.000 × 0	, , , , , , , , , , , , , , , , , , ,	8 v 0 7784)	, (0 ,1				
		= -	(24.2 × 420,000 × 0),000 + 38 x 7320)1.8)	= 0.834652				
	<u> </u>	lab)		Ap x fu						
	C (S	aub) = -	[0.85 x f'c (slab)	xβ (slab) x b _{eff} ·	+ k x Ap x fu	/ d _p]				
		-		5,670 x 1,860			49.4 mm			
			[0.85 x 24.2 x 0.85 x	2,100 + 0.39 x 5	,670 x 1,860	/ 1,700] - 26	57.4 [[]]]]			
	fps	= fu x [1 - k x 0	C (slab) / d _p] = 1,860 :	x [1 - 0.39 x 269	.4 / 1,700] =	1744.5 Mpa				
	a	=β (slab) x C	(slab) = 0.85 x 269.4 =	229.0 mm						
	S =	= Ap x fps x (c	d _p - α / 2) / 10 ⁻⁶ = 5,67	0 x 1,744.5 x (1,	700 - 229.0 /	2)/10-6=15,68	34 kN-m			
	C (g	girder) = -	[Ap x fu - 0.85 >	κt, x β (average	e) x { f'c (slab) x b _{eff} - f'c (girde	er) x b _w }]			
1		= -	5,670 x 1,860 - 0.8 0.85 x 38 x 0.8]	s5 x 200 x 0.8346 334652 x 203 + 0	.39 x 5,670 x	2,100 - 38 x 203 } 1,860 / 1,700]	= 560.6 mm			
RATER	DRY ·		DATE	C		•	DATE ·			

	DEPARTMENT OF PUBLIC WORKS A	ND HIGHWAYS	RIDGE ID :	**** PAGE	:
	LOAD RATING CALC		RIDGE NAME :	PCDG CONTINUC	DUS
					NOTES
C.1.3 The sh	SHEAR CAPACITY AT MIDSPAN ear capacity of a section is addressed by	y the DPWH and AASHTO			
Desigr cracki at the the bc	Guidelines and Specifications. Shear co ag moment of the section. When the live pottom fiber, cracking moment is to be thom fiber stress. On the other hand, wh	apacity depends on the e load causes tension calculated based on en the live load causes			
calcul	at the top tiber of the beam, cracking i ated based on the top fiber stress.	noment is to be			
At the live loc the bc stress c	midspan location, the moment reported d shear is positive. Positive moments wil ttom fiber and thus cracking moment is t the bottom fiber.	I with the maximum I induce tension at to be based on the			
	 The cracking moment 				
	= $(lz / Y_{bot}) \times (0.5 f'c^{1/2} + fp)$ = $(0.217 / 0.812) \times \{0.5 \times sqr$ = 3775.4 kN-m	be - fd) t (38) + 28.32 + (-15.63 -	1.64)}x 1000		
	• The factored foral moment Mmax $Mmax = 1.3 M_{\rm p} + 1.3 \times 1.67 \times M_{\rm Her}$				
	= 1.3 x (4173.5 + 594.7) + 1.3 = 11231.6 kN-m	x 1.67 x 2319.3			
	The factored shear				
	Vi = $1.3 V_{D} + 1.3 \times 1.67 \times V_{LL+1}$ = $1.3 \times (0.0 + 0.0) + 1.3 \times 1.67$ = 440.3 kN	′ x 202.9			
	Vci = $0.05 \text{ Sqrt}(f'c) b_w d + V_d + V_d$ = $0.05 \text{ Sqrt} (38.00)$ = 254.4 KN	M _{cr} / M _{max} (203) (1.700) + 0.0	+ (440.3) (3,775	.4 / 11,231.6)	
	Vcw = $(0.3 \times f'c^{1/2} + 0.3 \times fpc) \times f^{-1/2}$ = $[(0.3 \times sqrt(24.2) + 0.3 \times (d))]$ = $1,474.5 \text{ kN}$	ow x d + Vp 9.69 + 2.63 + 0.0) } x 203 x	1700]/1000		
	• The shear capacity of the concrete	section			
	Vc = 254.4 kN ==>> Full Cap Vc' (reduced) = 0.8 x 254.4	acity = 204.2 KN ==>>	Use 80% concret	e capacity cks (40mm depth)	
	• The shear capacity of the shear reinf	orcement			
	Vs = 2 Av fy d_{eff} / S = 2 =	x (113.1) (415) (1.70 637.8 KN	0) / (250)		stirrups : D12mm A = 113.1 mm ²
	The total shear capacity becomes				
	$V_U = \phi (V_C + V_S) = 0.$	85 x (204.2 + 637.8) 715.7 KN			
RATED BY :	DATE :	CHECKED BY :		DATE :	
```
****
                     DEPARTMENT OF PUBLIC WORKS AND HIGHWAYS
                                                                             BRIDGE ID
                                                                                             :
                                                                                                            PAGE :
                  LOAD RATING CALCULATIONS
                                                                             BRIDGE NAME : PCDG CONTINUOUS
                                                                                                                         NOTES
                 SHEAR CAPACITY AT PIER SUPPORT
      C.1.3
      At the pier support location, the moment reported with the maximum
      live load shear is negative. Negative moments will induce tension at
      the top fiber and thus cracking moment is to be based on the
      stress at the top fiber.
             • The cracking moment
                        = - ( Iz / Y_{bot} ) x ( 0.5 f'c ^{1/2} + fpe - fd )
                        = - (0.420 / 0.641) x { 0.5 x sqrt (24.2) + 0.0 + (0.0 - 1.21) } x 1000
                            - 819.2 kN-m
                        =
             • The factored total moment Mmax
               Mmax = 1.3 M_{D} + 1.3 \times 1.67 \times M_{LL+I}
                        = 1.3 x (0.0 - 792.9) + 1.3 x 1.67 x ( - 449.8)
                        = - 2,006.8 kN-m
               The factored shear
                 Vi
                        = 1.3 V<sub>D</sub> + 1.3 x 1.67 x V<sub>LL+1</sub>
                        = 1.3 \times (-477.0 - 135.9) + 1.3 \times 1.67 \times (-465.3)
                        = -1,806.4 kN
                 Vci = 0.05 Sqrt(f'c) b_w d + V_d + V_i M_{cr} / M_{max}
                              0.05 x sqrt (38) x 203 x 1.744 + ( - 477.0 - 135.9 ) + ( - 1806.4 ) x ( - 819.2 / - 2006.8 )
                        =
                        =
                           1.350.4 KN
                 Vcw = (0.3 \times f'c^{1/2} + 0.3 \times fpc) \times bw \times d + Vp
                        = [\{0.3 \times \text{sqrt}(38) + 0.3 \times (0.0 + 11.13 + 0.0)\} \times 203 \times 1744] / 1000
                        = 1,836.5 kN
             • The shear capacity of the concrete section
                 Vc = 1,350.4 kN
                                           ==>> Full Capacity
                 Vc' (reduced) = 0.85 x 1350.4 = 1150.9 KN ==>> Use 85% concrete capacity
                                                                                due to shear cracks (30mm depth)
             • The shear capacity of the shear reinforcement
                                                                                                                    Stirrups :
                                                = 2 \times (113.1) (415) (1.744) / (150)
                                                                                                                    D12mm
                 Vs
                        = 2 \text{ Av fy } d_{eff} / S
                                                = 1,090.5 KN
                                                                                                                    A = 113.1 mm<sup>2</sup>
               The total shear capacity becomes
                 V_U = \phi (V_C + V_S) = 0.85 \times (1150.9 + 1090.5)
                                                = 1,905.1 KN
                               DATE :
                                                               CHECKED BY :
                                                                                                  DATE :
RATED BY :
```

	DEPARTMENT OF PUBL	IC WORKS AND HIGHWAYS	BRIDGE ID :	**** PAGE :
	LOAD RATING	G CALCULATIONS	BRIDGE NAME : PC	
2 1040				NOTES
C.2.1 LOAD	nd Rating Based on Servic	eability Limit State by ASM		
Sonvioogobi		A A ALITO Design Specifications		Saa Saat 2 5
(Section 9.	15) and the AASHTO MCEB N	Aanual (Sec. 6.6.3.3)		of this Manual
i. Using c	ompressive stress under all l	oad combination:		
Locati	on RF _{INV-COMALL} = -	0.6 f'c - (Fd + Fp + Fs) Fl	RF INV-COM	This Manual
At Mide	0.6	(38) - (15.80 + (-7.13) + 0.00)	- 557	
	. 0	2.56 .6 (38) - (2.19 + 8.48 + 0.00)		
At Pier Su	oport =	7.65	= 1.59	
ii. Using c	ompressive stress of Live Loc	ad, half the prestressing and perm	anent dead load:	This Manual
Locati	$P_{\text{DN}} = -$	0.4 f'c - 0.5 (Fd + Fp + Fs) RF INV-COM	Eq. 3.5-3
	0.4.13	FI	1147-0041	
At Mids	an =	2.56	= 4.24	1
At Pier Su	oport =0.4	(38) - 0.5 (2.19 + 8.48 + 0.00) 7.65	= 1.29	>
iii. Using a	llowable tension in concrete	»:		This Manual
		$0.5 f'c^{1/2} - (Ed + Ep + Es)$)	Eq. 3.5-1
Locati	$RF_{INV-COMLIVE} = -$	FI	RF INV-COM	LIVE
At Mids	ogn =	(38) ^{1/2} - (- 17.27 + 28.32 + 0.00)	= 2.10)
	0.5	-6.74 (38) ^{1/2} - (- 0.83 + 12.13 + 0.00)		
At Pier Su	oport =	-2.91	= 4.95	
TED BY :	DATE :	CHECKED BY	: DA	TE :

The general e	expression for the I	Rating Factor is:	
RF = —	$\frac{\phi \operatorname{Rn} - \gamma_{D} D}{\gamma_{L} \beta_{L} L (1 + 1)}$	where γ_D : 1.30 γ_L : 1.30 β_L : 1.67 β_L : 1.00	for inventory for Operating
		LOAD RATING CALCULATIONS (LFM)	
Location	Description	Inventory Rating (Tons)	Operating Rating (Tons)
Midspan	Moment	$\frac{14284-1.3(4174+595)}{1.3(1.67)(2441)} = 1.53 - 1.53$	$\frac{14284-1.3(4174+595)}{1.3(1.00)(2441)} = 2.55$ $\frac{716-1.3(0+0)}{716-1.3(0+0)} = 2.71$
	Moment	$\frac{1.3(1.67)(203)}{-8045 \cdot 1.3(0.793)} = 1.17 - 1.3(1.67)(-2771)$	$\frac{1.3(1.00)(203)}{-8045-1.3(0.793)} = 1.95$
At Support	Shear	$\frac{-1905 - 1.3(-477 - 136)}{1.3(1.67)(-465)} = 1.10 - 1.10$	$\frac{-1905-1.3(-477-136)}{1.3(1.00)(-465)} = 1.83$
Midspan	Moment Shear Moment	1.53 x 33 = 50.4 1.63 x 33 = 53.6 1.17 x 33 = 38.5	$2.55 \times 33 = 84.1$ $2.71 \times 33 = 89.5$ $1.95 \times 33 = 64.3$
At Support	Shear	1.10 x 33 = 36.2	1.83 x 33 = 60.5
this example, t e strength limit rform load pos	he Rating Factors state are greater sting calculations.	; (RF) for both the serviceability limit state than one (RF >> 1) so that there is no ne . Therefore, the bridge can safely carry t	e and teed to the intended traffic loads.

LOAD R. PSTING UNDER S AND UNDER S Decedure for load p ID FORCES FOR LOA ID FORCES FOR LOA ID onding to Types 1- Donding to Types 1-	ATING CALCU SERVICEABILITY LIMIT TRENGTH LIMIT STATE posting is similar to the ab AD POSTING VEHICLES and shears can be separe -1, 1-2 and 12-2 Posting V	STATE BY ALLON STATE BY ALLON BY LOAD FACT	BRIDGE NA WABLE STRE OR METHO sting vehicles	ME : PC SS METHOL D (LFM) for live load.	D (ASM)
DSTING UNDER S AND UNDER S Decedure for load p ID FORCES FOR LOA Hoad moments ar Donding to Types 1- Dan continuous (3@	SERVICEABILITY LIMIT TRENGTH LIMIT STATE posting is similar to the ab AD POSTING VEHICLES and shears can be separe -1, 1-2 and 12-2 Posting V	STATE BY ALLON BY LOAD FACT	WABLE STRE OR METHO	SS METHOI D (LFM) for live load.	D (ASM)
STING UNDER S AND UNDER S Decedure for load p ID FORCES FOR LOA Decedure for load p ID FORCES FOR LOA Decedure for load p Decedure for load p Dece	SERVICEABILITY LIMIT TRENGTH LIMIT STATE posting is similar to the ab AD POSTING VEHICLES Ind shears can be separa -1, 1-2 and 12-2 Posting V	STATE BY ALLON	WABLE STRE OR METHO	SS METHOL D (LFM) for live load.	D (ASM)
	@35.0m) bridge the Posti	ately taken from co Vehicles.	onducting a s	tructural ana	alysis
				41.5: 0	
venicie type		AT N	1iaspan	At Pier Supp	port
1.4 m 1			010.0	-448./	I
moment			217.7	-/02.9	—— I
			44/.3	-934.3	I
Shaar			5U.J	-123.2	— I
SHECK		<u>د ا</u>	94.1	-171.8	I
calculations are do	one using Eqs. 3.5-2, 3.5-3 under all load combinat	STATE by ASM 3 and 3.5-1 for ratir tion:	ng factor and	load rating	
calculations are do ompressive stress on RF INV-COM	lone using Eqs. 3.5-2, 3.5-3 under all load combinat wall =0.6	STATE by ASM 3 and 3.5-1 for ratir tion: <u>ftc - (Fd + Fp + Fs)</u> Fl	ng factor and	load rating RF _{INV-COM}	This Manua IALL Eq. 3.5-2
calculations are d ompressive stress on RF INV-CON ype 1-1 =	lone using Eqs. 3.5-2, 3.5-3 under all load combinat wall =	STATE by ASM 3 and 3.5-1 for ratir tion: fc - (Fd + Fp + Fs) Fl (-7.13) + 0.00) :6	ng factor and	RF INV-COM	This Manua Eq. 3.5-2 8
calculations are d ompressive stress on RF INV-COA ype 1-1 = ype 1-2 =	lone using Eqs. 3.5-2, 3.5-4 under all load combinat MALL =	STATE by ASM 3 and 3.5-1 for ratir tion: 6 f'c - (Fd + Fp + Fs) Fl + (-7.13) + 0.00) 16 - (-7.13) + 0.00) 18	ng factor and	RF _{INV-COM} = 16.38 = 11.04	This Manua Eq. 3.5-2 8
calculations are d ompressive stress on RF INV-CON ype 1-1 = ype 1-2 = ype 2-2 =	lone using Eqs. 3.5-2, 3.5- under all load combinat UNALL = 0.6 0.6 (38) - (15.80 + 0.6 (38) - (15.80 + 1.2 0.6 (38) - (15.80 + 1.5	STATE by ASM 3 and 3.5-1 for ratir tion: 5 f'c - (Fd + Fp + Fs) Fl + (-7.13) + 0.00) 16 + (-7.13) + 0.00) 18 - (-7.13) + 0.00) 12	ng factor and	RF INV-COM = 16.38 = 11.04 = 9.31	This Manua Eq. 3.5-2 8
calculations are d compressive stress on RF INV-CON ype 1-1 = ype 1-2 = ype 2-2 = ype 1-1 =	lone using Eqs. 3.5-2, 3.5-4 under all load combinat $_{MALL} = \frac{0.6}{0.6(38) - (15.80 + 0.8)}$ 0.6(38) - (15.80 + 1.2) 0.6(38) - (15.80 + 1.5) 0.6(38) - (2.19) 1.2)	STATE by ASM 3 and 3.5-1 for ratir tion: ration: F(-7,13) + 0.00) F(-7,13)	ng factor and	RF INV-COM = 16.38 = 11.04 = 9.31 = 9.79	MIL Eq. 3.5-2 8 4
calculations are d compressive stress on RF INV-CON ype 1-1 =	lone using Eqs. 3.5-2, 3.5-4 under all load combinat $_{MALL} = \frac{0.6}{0.6 (38) - (15.80 + 0.8)}$ 0.6 (38) - (15.80 + 1.2) 0.6 (38) - (15.80 + 1.2) 0.6 (38) - (15.80 + 1.2) 0.6 (38) - (2.19) 1.2 0.6 (38) - (2.19) 1.9	STATE by ASM 3 and 3.5-1 for ratir tion: f(c - (Fd + Fp + Fs)) Fl + (-7.13) + 0.00) (-7.13) + 0.00) (2 + 8.48 + 0.00) (4	ng factor and	RF INV-COM = 16.38 = 11.04 = 9.31 = 9.79 = 6.25	This Manual Eq. 3.5-2 8 4 1 2
•	Moment Shear	Vehicle Type Type 1-1 Moment Type 1-2 Type 12-2 Type 1-1 Shear Type 1-2 Type 1-2 Type 1-2 Type 1-2 Type 1-2 Type 1-2	Vehicle type Type 1-1 8 Moment Type 1-2 12 Type 1-2 12 14 Shear Type 1-2 14 Type 1-2 14 14	Vehicle Type LL Demana At Midspan Image: Moment Type 1-1 822.1 Type 1-2 1219.9 Type 12-2 1447.3 Shear Type 1-2 85.5 Type 12-2 84.1	Vehicle Type LL Demand At Midspan At midspan Moment Type 1-1 822.1 -448.7 Type 1-2 1219.9 -702.9 Type 12-2 1447.3 -934.3 Shear Type 1-1 60.3 -123.2 Type 1-2 85.5 -191.8 Type 12-2 84.1 -248.8

$\begin{array}{c ccccccc} \hline \begin{tabular}{ c ccccccc c c c c c c c c c c c c c c$	$\frac{14284-1.3(4174+595)}{1.3(1.67)(822)} = 4.53 \qquad \frac{14284-1.3(4174+595)}{1.3(1.00)(822)} = 7.57$ $\frac{14284-1.3(4174+595)}{1.2} = 3.05 \qquad \frac{14284-1.3(4174+595)}{1.3(1.00)(1220)} = 5.10$ $\frac{14284-1.3(4174+595)}{1.22} \qquad \frac{14284-1.3(4174+595)}{1.3(1.67)(1447)} = 2.57 \qquad \frac{14284-1.3(4174+595)}{1.3(1.00)(1447)} = 4.30$ $\frac{17}{122} \qquad \frac{716-1.3(0+0)}{1.3(1.67)(1447)} = 5.47 \qquad \frac{716-1.3(0+0)}{1.3(1.00)(60)} = 9.13$ $\frac{17}{1-1} \qquad \frac{716-1.3(0+0)}{1.3(1.67)(86)} = 3.86 \qquad \frac{716-1.3(0+0)}{1.3(1.00)(86)} = 6.44$ $\frac{17}{122} \qquad \frac{716-1.3(0+0)}{1.3(1.67)(84)} = 3.92 \qquad \frac{716-1.3(0+0)}{1.3(1.00)(84)} = 6.55$ $\frac{17}{1-1} \qquad \frac{-8045-1.3(0-793)}{1.3(1.67)(449)} = 7.20 \qquad \frac{-8045-1.3(0-793)}{1.3(1.00)(449)} = 12.02$	Constraint Description Inventory kdting (tons) Operating kdting (tons) Type 1.1 $1.3(1.67)(822)$ = 4.53 $14284-1.3(4174+595)$ = 7.57 Type $1.4284-1.3(4174+595)$ = 3.05 $14284-1.3(4174+595)$ = 7.57 Type $14284-1.3(4174+595)$ = 3.05 $14284-1.3(4174+595)$ = 5.10 Type $14284-1.3(4174+595)$ = 3.05 $14284-1.3(4174+595)$ = 5.10 Type $14284-1.3(4174+595)$ = 2.57 $14284-1.3(4174+595)$ = 4.30 Type $14284-1.3(4174+595)$ = 2.57 $14284-1.3(4174+595)$ = 4.30 Type $716-1.3(0+0)$ = 5.47 $716-1.3(0+0)$ = 9.13 Type $716-1.3(0+0)$ = 5.47 $716-1.3(0+0)$ = 9.13 Type $716-1.3(0+0)$ = 3.86 $716-1.3(0+0)$ = 6.44 Type $716-1.3(0+0)$ = 3.92 $716-1.3(0+0)$ = 6.55 Type $716-1.3(0-793)$ = 7.20 $-8045-1.3(0-793)$ = 12.02 Type $-8045-1.3(0-793)$ = 7.20 $-8045-1.3(0-793)$ = 12.02 Type $-8045-1.3($			LOAD RATING CALCU)	(7)	
Type 1-1 $\frac{14284-1.3(4174+595)}{1.3(1.67)(822)} = 4.53$ $\frac{14284-1.3(4174+595)}{1.3(1.00)(822)} = 7.57$ Type 1-2 $\frac{14284-1.3(4174+595)}{1.3(1.67)(1220)} = 3.05$ $\frac{14284-1.3(4174+595)}{1.3(1.00)(1220)} = 5.10$ Type 1-2 $\frac{14284-1.3(4174+595)}{1.3(1.67)(1220)} = 2.57$ $\frac{14284-1.3(4174+595)}{1.3(1.00)(1447)} = 4.30$ Type 12-2 $\frac{716-1.3(0+0)}{1.3(1.67)(60)} = 5.47$ $\frac{716-1.3(0+0)}{1.3(1.00)(1447)} = 9.13$ Type 1-1 $\frac{716-1.3(0+0)}{1.3(1.67)(60)} = 3.86$ $\frac{716-1.3(0+0)}{1.3(1.00)(60)} = 6.44$ Type 1-2 $\frac{716-1.3(0+0)}{1.3(1.67)(84)} = 3.92$ $\frac{716-1.3(0+0)}{1.3(1.00)(84)} = 6.55$ Type 1-1 $\frac{716-1.3(0+0)}{1.3(1.67)(84)} = 7.20$ $\frac{-8045-1.3(0-793)}{1.3(1.00)(-449)} = 12.02$ Type 1-2 $\frac{-8045-1.3(0-793)}{1.3(1.67)(-703)} = 4.60$ $\frac{-8045-1.3(0-793)}{1.3(1.00)(-449)} = 7.68$	Type 1-1 $\frac{14284 \cdot 1.3(4174 + 595)}{1.3(1.67)(822)} = 4.53$ $\frac{14284 \cdot 1.3(4174 + 595)}{1.3(1.00)(822)} = 7.57$ Type 1-2 $\frac{14284 \cdot 1.3(4174 + 595)}{1.3(1.67)(1220)} = 3.05$ $\frac{14284 \cdot 1.3(4174 + 595)}{1.3(1.00)(1220)} = 5.10$ Type 12-2 $\frac{14284 \cdot 1.3(4174 + 595)}{1.3(1.67)(1447)} = 2.57$ $\frac{14284 \cdot 1.3(4174 + 595)}{1.3(1.00)(1447)} = 4.30$ Type 12-2 $\frac{716 \cdot 1.3(0 + 0)}{1.3(1.67)(60)} = 5.47$ $\frac{716 \cdot 1.3(0 + 0)}{1.3(1.00)(60)} = 9.13$ Type 1-1 $\frac{716 \cdot 1.3(0 + 0)}{1.3(1.67)(86)} = 3.86$ $\frac{716 \cdot 1.3(0 + 0)}{1.3(1.00)(86)} = 6.44$ Type 12-2 $\frac{716 \cdot 1.3(0 + 0)}{1.3(1.67)(84)} = 3.92$ $\frac{716 \cdot 1.3(0 + 0)}{1.3(1.00)(84)} = 6.55$ Type 12-2 $\frac{716 \cdot 1.3(0 - 0)}{1.3(1.67)(84)} = 3.92$ $\frac{716 \cdot 1.3(0 - 0)}{1.3(1.00)(84)} = 6.55$ Type 1-1 $\frac{716 \cdot 1.3(0 - 0)}{1.3(1.67)(84)} = 7.20$ $\frac{-8045 \cdot 1.3(0 - 793)}{1.3(1.00)(-449)} = 12.02$ Type 1-1 $\frac{-8045 \cdot 1.3(0 - 793)}{1.3(1.67)(-449)} = 7.20$ $\frac{-8045 \cdot 1.3(0 - 793)}{1.3(1.00)(-449)} = 12.02$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Location	Description	Inventory Rating (10	nsj	Operating Rating	(ions)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Type 1-2 $\frac{14284 \cdot 1.3(4174 + 595)}{1.3(1.67)(1220)} = 3.05$ $\frac{14284 \cdot 1.3(4174 + 595)}{1.3(1.00)(1220)} = 5.10$ Type 12-2 $\frac{14284 \cdot 1.3(4174 + 595)}{1.3(1.67)(1447)} = 2.57$ $\frac{14284 \cdot 1.3(4174 + 595)}{1.3(1.00)(1447)} = 4.30$ Type 1-1 $\frac{716 \cdot 1.3(0 + 0)}{1.3(1.67)(60)} = 5.47$ $\frac{716 \cdot 1.3(0 + 0)}{1.3(1.00)(60)} = 9.13$ Type 1-2 $\frac{716 \cdot 1.3(0 + 0)}{1.3(1.67)(86)} = 3.86$ $\frac{716 \cdot 1.3(0 + 0)}{1.3(1.00)(86)} = 6.44$ Type 1-2 $\frac{716 \cdot 1.3(0 + 0)}{1.3(1.67)(84)} = 3.92$ $\frac{716 \cdot 1.3(0 + 0)}{1.3(1.00)(84)} = 6.55$ Type 1-1 $\frac{716 \cdot 1.3(0 - 0)}{1.3(1.67)(449)} = 7.20$ $\frac{-8045 \cdot 1.3(0 - 793)}{1.3(1.00)(-449)} = 12.02$ Type 1-1 $\frac{-8045 \cdot 1.3(0 - 793)}{1.3(1.67)(-449)} = 7.20$ $\frac{-8045 \cdot 1.3(0 - 793)}{1.3(1.00)(-449)} = 12.02$	Type $14284 \cdot 1.3(4174 \cdot 595)$ = 3.05 $14284 \cdot 1.3(4174 \cdot 595)$ = 5.10 Type $14284 \cdot 1.3(4174 \cdot 595)$ = 3.05 $14284 \cdot 1.3(4174 \cdot 595)$ = 5.10 Type $14284 \cdot 1.3(4174 \cdot 595)$ = 2.57 $14284 \cdot 1.3(4174 \cdot 595)$ = 4.30 Type $12 \cdot 2$ $1.3(1.67)(1447)$ = 2.57 $14284 \cdot 1.3(4174 + 595)$ = 4.30 Type $716 \cdot 1.3(0 \cdot 0)$ = 5.47 $716 \cdot 1.3(0 \cdot 0)$ = 9.13 Type $716 \cdot 1.3(0 \cdot 0)$ = 3.86 $716 \cdot 1.3(0 \cdot 0)$ = 6.44 Type $716 \cdot 1.3(0 \cdot 0)$ = 3.86 $716 \cdot 1.3(0 \cdot 0)$ = 6.55 Type $716 \cdot 1.3(0 \cdot 0)$ = 3.92 $716 \cdot 1.3(0 \cdot 0)$ = 6.55 Type $716 \cdot 1.3(0 \cdot 79.3)$ = 7.20 $-8045 \cdot 1.3(0 \cdot 79.3)$ = 1.202 Type $-8045 \cdot 1.3(0 \cdot 79.3)$ = 7.20 $-8045 \cdot 1.3(0 \cdot 79.3)$ = 7.68 Type $1.3(1.67)(-703)$ = $4.$	c	Type 1-1	14284-1.3(4174+595) 1.3(1.67)(822)	- = 4.53	14284-1.3(4174+595) 1.3(1.00)(822)	- = 7.57	
$\frac{14284-1.3(4174+595)}{1.2\cdot2} = 2.57 \qquad \frac{14284-1.3(4174+595)}{1.3(1.00)(1447)} = 4.30$ $\frac{12\cdot2}{1.2\cdot2} \qquad \frac{14284-1.3(4174+595)}{1.3(1.67)(1447)} = 5.47 \qquad \frac{14284-1.3(4174+595)}{1.3(1.00)(1447)} = 4.30$ $\frac{11}{1-1} \qquad \frac{11}{1.3(1.67)(60)} = 5.47 \qquad \frac{716-1.3(0+0)}{1.3(1.00)(60)} = 9.13$ $\frac{11}{1-2} \qquad \frac{716-1.3(0+0)}{1.3(1.67)(86)} = 3.86 \qquad \frac{716-1.3(0+0)}{1.3(1.00)(86)} = 6.44$ $\frac{11}{1.2} \qquad \frac{716-1.3(0+0)}{1.3(1.67)(84)} = 3.92 \qquad \frac{716-1.3(0+0)}{1.3(1.00)(84)} = 6.55$ $\frac{11}{1-1} \qquad \frac{-8045-1.3(0-793)}{1.3(1.67)(-449)} = 7.20 \qquad \frac{-8045-1.3(0-793)}{1.3(1.00)(-449)} = 12.02$ $\frac{11}{1-2} \qquad \frac{-8045-1.3(0-793)}{1.3(1.67)(-703)} = 4.60 \qquad \frac{-8045-1.3(0-793)}{1.3(1.00)(-449)} = 7.68$	Type 12-2 $\frac{14284-1.3(4174+595)}{1.3(1.67)(1447)} = 2.57$ $\frac{14284-1.3(4174+595)}{1.3(1.00)(1447)} = 4.30$ Type 1-1 $\frac{716-1.3(0+0)}{1.3(1.67)(60)} = 5.47$ $\frac{716-1.3(0+0)}{1.3(1.00)(60)} = 9.13$ Type 1-2 $\frac{716-1.3(0+0)}{1.3(1.67)(86)} = 3.86$ $\frac{716-1.3(0+0)}{1.3(1.00)(86)} = 6.44$ Type 1-2 $\frac{716-1.3(0+0)}{1.3(1.67)(84)} = 3.92$ $\frac{716-1.3(0+0)}{1.3(1.00)(84)} = 6.55$ Type 1-1 $\frac{716-1.3(0+0)}{1.3(1.67)(84)} = 7.20$ $\frac{-8045-1.3(0-793)}{1.3(1.00)(-449)} = 12.02$ Type 1-1 $\frac{-8045-1.3(0-793)}{1.3(1.67)(-449)} = 7.20$ $\frac{-8045-1.3(0-793)}{1.3(1.00)(-449)} = 12.02$	Type $14284-1.3(4174+595)$ $= 2.57$ $14284-1.3(4174+595)$ $= 4.30$ Type $716-1.3(0+0)$ $= 5.47$ $716-1.3(0+0)$ $= 9.13$ Type $716-1.3(0+0)$ $= 5.47$ $716-1.3(0+0)$ $= 9.13$ Type $716-1.3(0+0)$ $= 3.86$ $716-1.3(0+0)$ $= 6.44$ Type $716-1.3(0+0)$ $= 3.86$ $716-1.3(0+0)$ $= 6.44$ Type $716-1.3(0+0)$ $= 3.92$ $716-1.3(0+0)$ $= 6.55$ Type $716-1.3(0+0)$ $= 3.92$ $716-1.3(0+0)$ $= 6.55$ Type $716-1.3(0-793)$ $= 7.20$ $-8045-1.3(0-793)$ $= 12.02$ Type $-8045-1.3(0-793)$ $= 4.60$ $-8045-1.3(0-793)$ $= 7.68$ Type $-8045-1.3(0-793)$ $= 4.60$ $-8045-1.3(0-793)$ $= 5.77$ Type $-8045-1.3(0-793)$ $= 3.46$ $-8045-1.3(0-793)$ $= 5.77$	t Midspa Moment	Туре 1-2	14284-1.3(4174+595) 1.3(1.67)(1220)	- = 3.05	14284-1.3(4174+595) 1.3(1.00)(1220)	- = 5.10	
Type 1-1 $\overline{716-1.3(0+0)}$ $1.3(1.67)(60)$ = 5.47 $\overline{716-1.3(0+0)}$ $1.3(1.00)(60)$ = 9.13 Type Type 1-2 $\overline{716-1.3(0+0)}$ $1.3(1.67)(86)$ = 3.86 $\overline{716-1.3(0+0)}$ $1.3(1.00)(86)$ = 6.44 Type 12-2 $\overline{716-1.3(0+0)}$ $1.3(1.67)(84)$ = 3.92 $\overline{716-1.3(0+0)}$ $1.3(1.00)(84)$ = 6.55 Type 12-2 $\overline{716-1.3(0+0)}$ $1.3(1.67)(84)$ = 3.92 $\overline{716-1.3(0+0)}$ 	Type $716-1.3(0+0)$ = 5.47 $716-1.3(0+0)$ = 9.13 Type $716-1.3(0+0)$ = 3.86 $716-1.3(0+0)$ = 6.44 Type $716-1.3(0+0)$ = 3.86 $716-1.3(0+0)$ = 6.44 Type $716-1.3(0+0)$ = 3.92 $716-1.3(0+0)$ = 6.55 Type $716-1.3(0-793)$ = 3.92 $716-1.3(0-793)$ = 6.55 Type $716-1.3(0-793)$ = 7.20 $-8045-1.3(0-793)$ = 12.02 Type $-8045-1.3(0-793)$ = $-8045-1.3(0-793)$ = 12.02	Type $716-1.3(0+0)$ = 5.47 $716-1.3(0+0)$ = 9.13 Deg Type $716-1.3(0+0)$ = 3.86 $716-1.3(0+0)$ = 6.44 Type $716-1.3(0+0)$ = 3.86 $716-1.3(0+0)$ = 6.44 Type $716-1.3(0+0)$ = 3.92 $716-1.3(0+0)$ = 6.55 Type $716-1.3(0-0)$ = 3.92 $716-1.3(0+0)$ = 6.55 Type $716-1.3(0-793)$ = 3.92 $716-1.3(0-793)$ = 6.55 Type $-8045-1.3(0-793)$ = 7.20 $-8045-1.3(0-793)$ = 12.02 Type $-8045-1.3(0-793)$ = 7.68 $1.3(1.00)(-449)$ = 7.68 Type $-8045-1.3(0-793)$ = 4.60 $-8045-1.3(0-793)$ = 7.68 Type $-8045-1.3(0-793)$ = 3.46 $-8045-1.3(0-793)$ = 5.77	4	Туре 12-2	14284-1.3(4174+595) 1.3(1.67)(1447)	- = 2.57	14284-1.3(4174+595) 1.3(1.00)(1447)	- = 4.30	
$\frac{1}{12} = \frac{1}{1.2} + \frac{1}{1.3(1.67)(86)} = 3.86 + \frac{1}{1.3(1.00)(86)} = 6.44$ $\frac{1}{1.2} + \frac{1}{1.3(1.67)(86)} = 3.92 + \frac{1}{1.3(1.00)(86)} = 6.55$ $\frac{1}{12-2} + \frac{1}{1.3(1.67)(84)} = 3.92 + \frac{1}{1.3(1.00)(84)} = 6.55$ $\frac{1}{1-1} + \frac{-8045 \cdot 1.3(0 - 793)}{1.3(1.67)(-449)} = 7.20 + \frac{-8045 \cdot 1.3(0 - 793)}{1.3(1.00)(-449)} = 12.02$ $\frac{1}{1-2} + \frac{-8045 \cdot 1.3(0 - 793)}{1.3(1.67)(-703)} = 4.60 + \frac{-8045 \cdot 1.3(0 - 793)}{1.3(1.00)(-449)} = 7.68$	Type $716-1.3(0+0)$ = 3.86 $716-1.3(0+0)$ = 6.44 Type $716-1.3(0+0)$ = 3.86 $716-1.3(0+0)$ = 6.44 Type $716-1.3(0+0)$ = 3.92 $716-1.3(0+0)$ = 6.55 Type $-8045-1.3(0-793)$ = 7.20 $-8045-1.3(0-793)$ = 12.02 Type $-8045-1.3(0-793)$ $-8045-1.3(0-793)$ $-8045-1.3(0-793)$ $-8045-1.3(0-793)$	$\frac{1}{12} \frac{1}{1.2} \frac{716-1.3(0+0)}{1.3(1.67)(86)} = 3.86 \frac{716-1.3(0+0)}{1.3(1.00)(86)} = 6.44$ $\frac{1}{12-2} \frac{716-1.3(0+0)}{1.3(1.67)(84)} = 3.92 \frac{716-1.3(0+0)}{1.3(1.00)(84)} = 6.55$ $\frac{1}{12-2} \frac{-8045-1.3(0-793)}{1.3(1.67)(-449)} = 7.20 \frac{-8045-1.3(0-793)}{1.3(1.00)(-449)} = 12.02$ $\frac{1}{1-2} \frac{-8045-1.3(0-793)}{1.3(1.67)(-703)} = 4.60 \frac{-8045-1.3(0-793)}{1.3(1.00)(-449)} = 7.68$ $\frac{1}{12-2} \frac{-8045-1.3(0-793)}{1.3(1.67)(-703)} = 3.46 \frac{-8045-1.3(0-793)}{1.3(1.00)(-449)} = 5.77$	_	Туре	716-1.3(0+0) 1.3(1.67)(60)	— = 5.47	716-1.3(0+0)	- = 9.13	
Type 12-2 $\frac{716-1.3(0+0)}{1.3(1.67)(84)} = 3.92$ $\frac{716-1.3(0+0)}{1.3(1.00)(84)} = 6.55$ Type 1-1 $\frac{-8045-1.3(0-793)}{1.3(1.67)(-449)} = 7.20$ $\frac{-8045-1.3(0-793)}{1.3(1.00)(-449)} = 12.02$ Type 1-2 $\frac{-8045-1.3(0-793)}{1.3(1.67)(-703)} = 4.60$ $\frac{-8045-1.3(0-793)}{1.3(1.00)(-449)} = 7.68$	Type 12-2 $716-1.3(0+0)$ $1.3(1.67)(84)$ = 3.92 $716-1.3(0+0)$ $1.3(1.00)(84)$ = 6.55 Type 	Type $\frac{716-1.3(0+0)}{1.3(1.67)(84)} = 3.92$ $\frac{716-1.3(0+0)}{1.3(1.00)(84)} = 6.55$ Type $\frac{-8045-1.3(0-793)}{1.3(1.67)(-449)} = 7.20$ $\frac{-8045-1.3(0-793)}{1.3(1.00)(-449)} = 12.02$ Type $\frac{-8045-1.3(0-793)}{1.3(1.67)(-703)} = 4.60$ $\frac{-8045-1.3(0-793)}{1.3(1.00)(-449)} = 7.68$ Type $\frac{-8045-1.3(0-793)}{1.3(1.67)(-703)} = 4.60$ $\frac{-8045-1.3(0-793)}{1.3(1.00)(-449)} = 7.68$ Type $\frac{-8045-1.3(0-793)}{1.3(1.67)(-703)} = 3.46$ $\frac{-8045-1.3(0-793)}{1.3(1.00)(-449)} = 5.77$	t Midspan Shear	Туре	716-1.3(0+0) 1.3(1.67)(86)	_ = 3.86	716-1.3(0+0)	- = 6.44	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Type $-8045-1.3(0-793)$ $= 7.20$ $-8045-1.3(0-793)$ $= 12.02$ 1-1 $1.3(1.67)(-449)$ $= 7.20$ $1.3(1.00)(-449)$ $= 12.02$ Type $-8045-1.3(0-793)$ $= -8045-1.3(0-793)$	Type 1-1 $-8045-1.3(0-793)$ $1.3(1.67)(-449)$ = 7.20 $-8045-1.3(0-793)$ $1.3(1.00)(-449)$ = 12.02Type 1-2 $-8045-1.3(0-793)$ $1.3(1.67)(-703)$ = 4.60 $-8045-1.3(0-793)$ $1.3(1.00)(-449)$ = 7.68Type 	<	Туре 12-2	716-1.3(0+0) 1.3(1.67)(84)	- = 3.92	716-1.3(0+0) 1.3(1.00)(84)	- = 6.55	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1-1 1.3(1.67)(-449) 1.3(1.00)(-449) 1.3(1.00)(-449) 1.3(1.00)(-449) 1.3(1.00)(-449) 1.3(1.00)(-449) 1.3(1.00)(-449)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Туре	-8045-1.3(0-793)	- = 7.20	-8045-1.3(0-793)	- = 12.02	
$\begin{array}{cccc} & & & & & \\ \hline & & & & \\ \hline \hline & & & \\ \hline \hline & & & \\ \hline & & & \\ \hline \hline \\ \hline & & & \\ \hline \hline & & & \\ \hline \hline \hline \\ \hline & & & \\ \hline \hline \\ \hline \hline \\ \hline \hline \hline \\ \hline \hline \\ \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \\ \hline $	Type -8045-1.3(0-793) -8045-1.3(0-793)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	port	1-1	1.3(1.67)(-449)	7.20	1.3(1.00)(-449)	12.02	
ち かんしょう たいしん ちょう ちょう しんしょう しょう しょう しょう しょう しょう しょう しょう しょう しょう	$\frac{1}{2} = \frac{1}{1.3(1.67)(-703)} = 4.60 \qquad \frac{1}{1.3(1.00)(-449)} = 7.68$	Type $\frac{-8045 - 1.3(0 - 793)}{12.2} = 3.46 \frac{-8045 - 1.3(0 - 793)}{12.2} = 5.77$	Pier Supp Moment	Туре 1-2	-8045-1.3(0-793) 1.3(1.67)(-703)	_ = 4.60	-8045-1.3(0-793) 1.3(1.00)(-449)	- = 7.68	
Type 12-2 $-8045-1.3(0-793)$ $1.3(1.67)(-934)$ = 3.46 $-8045-1.3(0-793)$ $1.3(1.00)(-449)$ = 5.77	Type 12-2 $-8045-1.3(0-793)$ $1.3(1.67)(-934)$ $= 3.46$ $-8045-1.3(0-793)$ $1.3(1.00)(-449)$ $= 5.77$	1.3(1.0/)(-734) 1.3(1.00)(-447)	A	Туре	-8045-1.3(0-793) 1.3(1.67)(-934)	_ = 3.46	-8045-1.3(0-793) 1.3(1.00)(-449)	- = 5.77	
Type $\frac{-1905-1.3(-477-136)}{1.3(1.67)(-123)} = 4.15$ $\frac{-1905-1.3(-477-136)}{1.3(1.00)(-123)} = 6.92$	Type $\frac{-1905-1.3(-477-136)}{1.3(1.67)(-123)} = 4.15$ $\frac{-1905-1.3(-477-136)}{1.3(1.00)(-123)} = 6.92$	Type $-1905-1.3(-477-136) = 4.15$ $-1905-1.3(-477-136) = 6.92$	br	Туре 1-1	-1905-1.3(-477-136) 1.3(1.67)(-123)	<u> </u>	-1905-1.3(-477-136) 1.3(1.00)(-123)	- = 6.92	
$\underbrace{\overset{\circ}{\text{b}}}_{\underline{a}} \underbrace{\overset{\circ}{\text{b}}}_{\underline{b}} \underbrace{\overset{\circ}{\text{b}}}_{1-2} \underbrace{\overset{-1905-1.3(-477-136)}{1.3(1.67)(-192)}} = 2.66 \underbrace{\overset{-1905-1.3(-477-136)}{1.3(1.00)(-192)}} = 4.45$		1-1 1.3(1.6/)(-123) 1.3(1.00)(-123)	^p ier Suppr Shear	Туре	-1905-1.3(-477-136) 1.3(1.67)(-192)	- = 2.66	-1905-1.3(-477-136) 1.3(1.00)(-192)	- = 4.45	
	$\frac{1}{2} = \frac{1}{2} = \frac{1905 - 1.3(-477 - 136)}{1.3(1.67)(-192)} = 2.66 = \frac{-1905 - 1.3(-477 - 136)}{1.3(1.00)(-192)} = 4.45$	$\begin{array}{cccc} & & & & & & & & & & & & & & & & & $	Att	Туре 12-2	-1905-1.3(-477-136) 1.3(1.67)(-249)	- = 2.05	-1905-1.3(-477-136) 1.3(1.00)(-249)	- = 3.43	
Type $\frac{-1905-1.3(-477-136)}{1.3(1.67)(-249)} = 2.05 \qquad \frac{-1905-1.3(-477-136)}{1.3(1.00)(-249)} = 3.43$	$\frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{-1905 - 1.3(-477 - 136)}{1.3(1.67)(-192)} = 2.66 \frac{-1905 - 1.3(-477 - 136)}{1.3(1.00)(-192)} = 4.45$ $\frac{1}{12 - 2} \frac{-1905 - 1.3(-477 - 136)}{1.3(1.67)(-249)} = 2.05 \frac{-1905 - 1.3(-477 - 136)}{1.3(1.00)(-249)} = 3.43$	$\frac{1-1}{12} = \frac{1.3(1.67)(-123)}{1.3(1.00)(-123)} = 2.66 = \frac{-1905-1.3(-477-136)}{1.3(1.00)(-192)} = 4.45$ $\frac{1}{12-2} = \frac{-1905-1.3(-477-136)}{1.3(1.67)(-249)} = 2.05 = \frac{-1905-1.3(-477-136)}{1.3(1.00)(-249)} = 3.43$							
$\frac{1}{5} = \frac{1}{5} = \frac{1}$, · · · · · · · · · · · · · · · · · · ·		Support 1ear		-1905-1.3(-477-136)	- = 2.66	-1905-1.3(-477-136)	- = 4.45	
<u>あ</u> た 1-2 1.3(1.67)(-192) 1.3(1.00)(-192)	Type $-1905-1.3(-477-136) = 2.66 -1905-1.3(-477-136) = 4.45$	$\overline{b} = \frac{1905-1.3(-477-136)}{1000} = 2.66 - \frac{-1905-1.3(-477-136)}{10000} = 4.45$	At Pier Sh	1-2 Туре	1.3(1.67)(-192) -1905-1.3(-477-136)	0.05	1.3(1.00)(-192) 1905-1.3(-477-136)	- 242	
Type -1905-1.3(-477-136) -1905-1.3(-477-136)	$\frac{1}{5} \underbrace{\frac{1}{5}}_{0} = \frac{1905 - 1.3(-477 - 136)}{1.2} = 2.66 \underbrace{-1905 - 1.3(-477 - 136)}_{1.3(1.00)(-192)} = 4.45$ $\frac{1}{5} \underbrace{\frac{1}{5}}_{1.2} = \frac{1905 - 1.3(-477 - 136)}{1.3(-477 - 136)} = 4.45$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		12-2	1.3(1.67)(-249)	— = 2.05	1.3(1.00)(-249)	= 3.43	

DEPARTMENT OF PUBLIC WORKS AND HIGHWAYS	BRIDGE ID	:
LOAD RATING CALCULATIONS	BRIDGE NAME	:

PCDG CONTINUOUS

PAGE :

										NOTES
	(Re	LOAD RA	TING C	CALC	CULATIONS 8 W = 33 M	(LFM) Netric Tons)				
Location	Description	Invento	ry Ratir	ng (1	ions)	Operatir	ig Rat	ting	(Tons)	
aan nt	Type1-1	4.53 x	17	=	77.0	7.57 x	17	=	128.6	
Aidspomer	Type 1-2	3.05 x	27	=	82.5	5.10 x	27	=	137.7	
A†A M	Type 12-2	2.57 x	38	=	97.8	4.30 x	38	=	163.3	
Jan	Type1-1	5.47 x	17	=	93.0	9.13 x	17	=	155.2	
Midsp Shea	Type 1-2	3.86 x	27	=	104.2	6.44 x	27	=	173.9	
Ath	Type 12-2	3.92 x	38	=	149.0	6.55 x	38	=	248.8	
ort 24	Type1-1	7.20 x	17	=	122.5	12.02 x	17	=	204.4	
Supp	Type 1-2	4.60 x	27	=	124.2	7.68 x	27	=	207.3	
At S M	Туре 12-2	3.46 x	38	=	131.5	5.77 x	38	=	219.4	
r oort	Type1-1	4.15 x	17	=	70.5	6.92 x	17	=	117.6	
Supp	Type 1-2	2.66 x	27	=	71.9	4.45 x	27	=	120.0	
¥,	Туре 12-2	2.05 x	38	=	78.0	3.43 x	38	=	130.2	

D. SUMMARY OF LOAD POSTING

The summary of calculation results for both the load factor and the allowable stress methods are presented below.

	S	SUMMARY O	F RESULTS FO	R LOAD POST	ING		
	Vehicle	At Mi	dspan	At Su	pport	POSTING	
Vehicle Type	Weight (Metric Tons)	Rating Factor	Load Rating	Rating Factor	Load Rating	(Metric Tons)	
M\$18	33.0	1.53	50.4	1.10	36.2	33	
Type 1-1	17.0	4.53	77.0	4.15	70.5	17	
Type 1-2	27.0	3.05	82.5	2.66	71.9	27	
Type 12-2	38.0	2.57	97.8	2.05	78.0	38	
			LOAD LIMIT	7Т			
				7T 27T 38T			

LOAD RATING CALCULATIONS	BRIDGE NAME	: PCDG	
			<u>N</u> (
INTENTIONALLY BLANK			

PCDG CONTINUOUS Manual Calculation

Example 4 Steel

I-GIRDER BRIDGE

Example 4-1: Simple

Example 4-2: Continuous

INTERIOR SIG SIMPLE

A. GENERAL

BACK TO MENU

			A1. BRID	GE DESC	RIPTION			
Bridge Loc	cation	REGION	VII					
Bridge Na	me		MANANGA	II Bridge				
Bridge	Simple or Cor	ntinuous	S	Steel I-Girc	ler Bridge			
Туре	Number of Sp	an	4					
Bridge Wic	Ith (curb to cu	rb) (m)	7.32					
Number of	f Lanes		2				-	
Bridge Ler	ngth (m)		35.000	35.000	35.000	35.000		=140.000m
Year Built 1970								
Nos. of Girder		3	Multiple G	rder composi	ite for live lo	bad		
Structure	Girder Spaci	ng (m)	3.200	on centers				
	Substructure		RC Cantile	ver Abutme	nts			
Wearing	thickness (mr	n)	50					
Course	material		Asphalt					_
Matorial P	roportios		fc=	8.3	Мра	fs=	265.0	Мра
iviateriai r	ropenties		f'C=	20.7	Мра	fy=	482.0	Мра
			Weight of b	oarrier rail V	/br =	4.600	KN/m	
Accumptio	2		Concrete L	Jnit Weight V	Nu =	24.0	KN/m ³	
Assumptio	11		Steel Girde	r Unit Weigh	it Ws =	77.0	KN/m ³	
			Asphalt Uni	t Weight Wa	a =	22.0	KN/m ³	
Others			Rating Live	Load is AAS	HTO MS18 (H	S20-44)		

Matorial	Year of	foorfu		fc or fs]
watenai	Construction	IC OF IV	Inventory	Operating	Posting	
	Prior to 1905	179.3	96.5	134.4	96.5	1
Structural	1905 to 1936	206.8	110.3	155.1	110.3	
Steel Bending	1936 to 1963	227.5	124.1	168.9	124.1	1
bending	after 1963	248.2	137.9	186.2	137.9	
Structural	Prior to 1905	179.3	58.6	79.3	58.6	
Steel	1905 to 1936	206.8	65.5	93.1	65.5	1
Web	1936 to 1963	227.5	75.8	103.4	75.8	1
Shear	after 1963	248.2	82.7	110.3	82.7	
	Prior to 1954	227.5	124.1	172.4	124.1	
Deber	after 1954	275.8	137.9	193.1	137.9]
Rebai	Grade 50	344.7	189.8	224.1	137.9	*pc
	Grade 60	413.7	227.5	248.2	165.5	*pc
	Prior to 1959	17.2	6.9	10.3	6.9	
Conorata	after 1959	20.7	8.3	13.1	8.3	1
Concrete	1977 to 1981	27.6	11.0	16.5	11.0	*pc
	after 1981	31.0	12.4	18.6	12.4	*pc

A2. BRIDGE LAYOUT AND DIMENSION

		GI	RDER SECT	ON			
SECTION	SECTION A (A	At Support)	SECTION B	(Dummy)	SECTION C (A	At Midspan)	
Location (m)	0.01	0	1.0	00	17.5	600	
Dimension	b (m)	h (m)	b (m)	h (m)	b (m)	h (m)	
Slab			thickness	= 0.180 m			
2190	0.320	0.180	0.320	0.180	0.320	0.180	*10 (Modular Ratio)
Lifla	0.240	0.010	0.280	0.019	0.300	0.022	
ung	0.000	0.000	0.000	0.000	0.000	0.000	
Wab	0.009	1.800	0.009	1.800	0.009	1.800	
veb	0.000	0.000	0.000	0.000	0.000	0.000	
l fl a	0.280	0.010	0.280	0.022	0.370	0.025	
Liig	0.000	0.000	0.000	0.000	0.000	0.000	
Lenath	6.10	0	14.2	200	13.9	00	

B. DEMAND FORCES

B.1 INPUT AND SECTION PROPERTIES

BO. INPUT	
Slab thickness ts (m)	0.180
Slab width ws (m)	3.200
Span Length L(m)	35.000

B1. PROPERTIES OF STEEL GIRDER SECTIONS								
(1) UNDER DEAD L	(1) UNDER DEAD LOAD (NON-COMPOSIE GIRDER)							
SECTION	Total Area	Web Area	Iz (m ⁴)	Y _b (m)	Y _t (m)	S _{xb} (m ³)	S _{xt} (m ³)	
A (At Support)	0.02140	0.01620	0.00863	0.89308	0.92692	0.00966	0.00931	
B (Dummy)	0.02768	0.01620	0.01387	0.89407	0.94693	0.01551	0.01464	
C (At Midspan)	0.03205	0.01620	0.01737	0.84924	0.99776	0.02045	0.01741	
(2) UNDER SUPERI	Mposed d	EAD LOAD	AND LIVE	E LOAD (C	OMPOSIE	GIRDER)		
A (At Support)	0.07900	0.01620	0.02492	1.63453	0.18547	0.01524	0.13435	
B (Dummy)	0.08528	0.01620	0.03412	1.59443	0.24657	0.02140	0.13840	
C (At Midspan)	0.08965	0.01620	0.04189	1.54813	0.29887	0.02706	0.14016	

Standard Section Area of "SECTION A"	
Original Section Area (m ²)	0.0214

B.2 DEAD LOAD CALCULATIONS

B2. DEAD LOAD CALCULATIONS				
		Section A (At Support)	0.287	
Uniform Load per meter of Girder (KN/m)	Solf woight of Cirdor	Section B (Dummy)	0.865	
	sell-weight of Glider	Section C (At Midspan)	0.980	
		Stiffener and Bracing	0.267	
	Slab Weight	Continuous	13.824	
	Barrier Rail	3.067		
	Asphalt Overlay	3.520		
	Total Load	22.809		
	Total DeadLoad	16.223		
	Total Superimposed D	6.587		
Doodlood	Moment (KN-m/m)	M _{DL}	2484.1	
	Shear (KN)	V _{DL}	283.9	
Superimpered Dead Load	Moment (KN-m/m)	M _{DL}	1008.6	
Superimposed Dead Load	Shear (KN)	V _{DL}	115.3	

B3. LIVE LOAD CALCULATIONS

B3. LIVE-LOAD CALCULATIONS								
LIVE-LOAD Type	MS18(HS20)							
Number of live load wheel line	1.750							
Impact factor	0.209	INPUT FOR LIVE LOAD						
span	35.00							
Max.MS18 moment for 35.00m span /wheel line		without Impact	ML	819.75				
		with Impact	M _{LL}	1733.65				
Max.MS18 shear at a distance "d"		without Impact	VL	143.49				
from the support/wheel line		with Impact	V _{LL}	303.46				

B4. LOAD DEMANDS ON DIFFERENT SECTIONS OF STEEL GIRDER

B4. Load Demand Midspan and Support of Steel Girder						
Loading	At Support	Section B (Dummy)	At Midspan			
LUAUING	0.01m	1.00m	17.50m			
Dead load moments, KN-m	2.8	275.8	2484.1			
Dead load shears, KN	283.7	267.7	0.0			
SDL moments, KN-m	1.2	112.0	1008.58			
SDL shears, KN	115.2	108.7	0.0			
LL moment + Impact, KN-m	3.1	305.0	1733.6			
LL shear + Impact, KN	314.7	305.0	118.7			

B5. LOAD STRESS CALCULATIONS

ESTIMATED STRESS DEMANDS AT GIRDER SECTIONS						
Loading	Location	At Support	Section B (Dummy)	At Midspan		
DI momont	Тор	0.30	18.83	142.69		
DEMOMENT	Bottom	-0.29	-17.78	-121.45		
(D) moment	Тор	0.01	0.81	7.20		
SDL moment	Bottom	-0.08	-5.23	-37.27		
	Тор	0.02	2.20	12.37		
LL+I MOMENT, O LL+I	Bottom	-0.21	-14.25	-64.07		
DL shear, v _{DL}		17.51	16.52	0.00		
SDL shear, v_{SDL}		7.11	6.71	0.00		
LL+I shear, $v_{\text{LL+I}}$		19.42	18.83	7.33		

C. LOAD RATING BY ALLOWABLE STRESS METHOD

C1. ALLOWABLE STRESS CALCULATIONS

C.1.1 ALLOWABLE STRESSES FOR CONCRETE AND STEEL						
Material Properties (Mpa)	Conorata	Allowable S	Allowable Stress		8.3	
	Concrete	Strength		f'c	20.7	
	Dobor	Allowable S	itress	fs	265.0	
	Rebai	Strength		fy	482.0	
C.1.2	C.1.2 COMPRESSION AND TENSILE STRESSES					
			Inventory		265.0	
Allowable compressiv	e siless		Operating		361.5	
Allowable tensile stres	S		Inventory		265.0	
C.1.3 ALLOWABLE SHEAR STRESS						
Allowable Shear Stress			Inve	entory	160.7	
Allowable shear stress			Ope	erating	216.9	

C2. LOAD RATING CALCULATIONS

	C2.1 RATING FACTO	R CALCULATIONS L	ISING ASM
Section	Description	Inventory	Operating
A +	Stress at Top Fiber	11301.38	15421.66
AI Support	Stress at Bottom Fiber	1282.08	1749.61
Support	Shear	7.01	9.90
D	Stress at Top Fiber	111.34	155.14
(Dummy)	Stress at Bottom Fiber	16.98	23.75
(Dunning)	Shear	7.30	10.29
A 1	Stress at Top Fiber	9.31	17.11
At Midspan	Stress at Bottom Fiber	1.66	3.17
тазран	Shear	21.94	29.61

C2.2 LOAD RATING CALCULATIONS						
C a atta a	Description	Rating Li	ve Load (M	etric Tons)	33.0	
Section	Description	Inve	Inventory		ating	
At	Moment	1282.08	42308.7	1749.61	57737.0	
Support	Shear	7.01	231.2	9.90	326.7	
В	Moment	16.98	560.4	23.75	783.9	
(Dummy)	Shear	7.30	241.0	10.29	339.5	
At	Moment	1.66	54.7	3.17	104.4	
Midspan	Shear	21.94	723.9	29.61	977.1	

Depend on the minimum value of Rating Factor > 1 or <1, instruction in the below cell is automatically shown

Return to GENERAL

Click following the above instruction

Return to GENERAL

Load Posting

D. LOAD POSTING BY ALLOWABLE STRESS (ASM)

D1. DEMAND FORCES FOR LOAD POSTING VEHICLES

D1.1 DEMAND FORCES FOR LOAD POSTING VEHICLES					
(1) POSTING VEHICLE Type 7	1-1				
LIVE-LOAD Type	Type1-1				
Number of live load wheel line	1.750				
Impact factor	0.209				
span	35.00				
Type 1.1 memory for 25.00m span	/whool line	without Impact	ML	695.45	
Type 1-1 moment for 35.00m spain.	wheeline	with Impact	M _{LL}	1470.77	
Type 1-1 shear at a distance "d"		without Impact	VL	80.64	
from the support/wheel line		with Impact	V _{LL}	170.54	
(2) POSTING VEHICLE Type 2	1-2				
LIVE-LOAD Type	Type1-2				
Type 1.2 memory for 25,00m span	/whool line	without Impact	ML	1036.00	
Type 1-2 moment for 35.00m span.	wheeline	with Impact	M _{LL}	2190.98	
Type 1-2 shear at a distance "d"		without Impact	VL	120.43	
from the support/wheel line		with Impact	V _{LL}	254.69	
(3) POSTING VEHICLE Type 7	12-2				
LIVE-LOAD Type	Type12-2				
Type 12.2 moment for 35.00m span /	wheelline	without Impact	ML	1261.27	
Type 12-2 moment for 55.00m span / wheeline		with Impact	M _{LL}	2667.39	
Type 12-2 shear at a distance "d"		without Impact	VL	144.01	
from the support/wheel line		with Impact	V _{LL}	304.56	

D1.2 POSTING VEHICLE DEMAND FORCES AT MIDSPAN, SUPPORT						
Posting Vehicle		At	В	At		
	Demand Forces	Support	(Dummy)	Midspan		
		0.01m	1.00m	17.50m		
Туре 1-1	Moment	1.72	167.24	1470.77		
	Shear	172.24	167.24	83.99		
	Moment	2.62	254.05	2190.98		
Type 1-2	Shear	261.98	254.05	121.95		
Tupo 12.2	Moment	3.30	319.22	2667.39		
Type 12-2	Shear	330.38	319.22	133.28		

D1.3 POSTING VEHICLE DEMAND STRESSES AT MIDSPAN, SUPPORT					
Posting Vehicle	Demand Forces	At Support	B (Dummy)	At Midspan	
	Top Fiber	0.01	1.21	10.49	
Type 1-1	Bottom Fiber	-0.11	-7.81	-54.35	
	Shear	10.63	10.32	5.18	
	Top Fiber	0.02	1.84	15.63	
Type 1-2	Bottom Fiber	-0.17	-11.87	-80.97	
	Shear	16.17	15.68	7.53	
Туре 12-2	Top Fiber	0.02	2.31	19.03	
	Bottom Fiber	-0.22	-14.92	-98.58	
	Shear	20.39	19.70	8.23	

E. POSTING LOAD RATING FACTOR CALCULATIONS

E1. LOAD POSTING RATING FACTOR CALCULATIONS (1)									
Desting Vah		At Su	pprot	B (Du	mmy)	At Midspan			
Posting ven	icie	Inventory	Operating	Inventory	Operating	Inventory	Operating		
	Top Fiber	19138.80	26666.17	203.04	282.89	10.97	20.17		
Type 1-1	Bott Fiber	2141.82	2995.94	30.97	43.32	1.96	3.73		
	Shear	12.80	18.08	13.32	18.76	31.00	41.84		
	Top Fiber	12582.61	17531.41	133.66	21.80	7.36	13.54		
Type 1-2	Bott Fiber	1408.12	1969.65	20.39	28.51	1.31	2.50		
	Shear	8.41	11.89	8.77	12.35	21.35	28.81		
	Top Fiber	9977.65	13901.90	106.37	148.21	6.05	11.12		
Туре 12-2	Bott Fiber	1116.60	1561.88	16.22	22.69	1.08	2.06		
	Shear	6.67	9.43	6.98	9.83	19.53	26.36		

	E2. LOAD POSTING RATING FACTOR CALCULATIONS (2)										
	Vehicle		Inven	tory	·		Ope	rating		Postina	
Vehicle Type	Weight (Metric	Mom	ient	She	Shear		nent	Sh	ear	(Metric	
21	Tons)	RF	LR	RF	LR	RF	LR	RF	LR	Tons)	
(1) AT S	UPPORT		······								
MS18	33.0	1,282.08	42308.7	7.01	231.2	1,749.61	57737.0	9.90	326.7	33	
Type 1-1	17.0	2,141.82	36410.9	12.80	217.6	2,995.94	50931.0	18.08	307.4	17	
Type 1-2	27.0	1,408.12	38019.1	8.41	227.2	1,969.65	53180.5	11.89	321.0	27	
Туре 12-2	38.0	1,116.60	42430.6	6.67	253.6	1,561.88	59351.3	9.43	358.3	38	
(2) SECT	TON B (E	Dummy)									
MS18	33.0	16.98	560.4	7.30	241.0	23.75	783.9	10.29	339.5	33	
Type 1-1	17.0	30.97	526.4	13.32	226.4	43.32	736.4	18.76	318.9	17	
Type 1-2	27.0	20.39	550.4	8.77	236.7	21.80	588.6	12.35	333.4	27	
Туре 12-2	38.0	16.22	616.5	6.98	265.1	22.69	862.3	9.83	373.5	38	
(3) AT N	1IDSPAN										
MS18	33.0	1.66	54.7	21.94	723.9	3.17	104.4	29.61	977.1	33	
Type 1-1	17.0	1.96	33.2	31.00	526.9	3.73	63.4	41.84	711.2	17	
Type 1-2	27.0	1.31	35.4	21.35	576.4	2.50	67.6	28.81	778.0	27	
Туре 12-2	38.0	1.08	41.0	19.53	742.2	2.06	78.2	26.36	1001.8	38	
									Load F	Postina	

END AND GO TO DECK SLAB

MS18

Type 1-1

Type 1-2

Type 12-2

33T 17T

27T 38T

Image: Note of the steel lighter on each section are calculated and given in the steel lighter on each section are calculated and given in the table below: Not A UNDER DEAD LOAD (Non-composite Girder) Section properties of the steel lighter on each section are calculated and given in the table below: Not A UNDER DEAD LOAD (Non-composite Girder) Section properties on table below: Not Section from the steel lighter on each section are calculated and given in the table below: Not A UNDER DEAD LOAD (Non-composite Girder) Section (m32) (m4) (m) (m) (m) (m) (m) B UQ2268 D1620 D1620 001837 0.88908 0.99778 0.02046 0.01711 B: UNDER SUPFRIMPOSED DEAD LOAD AND LIVE LOAD (Composite Girder) Section (m) (m) (m) (m) (m) (m) (m) 0.1386 0.29867 0.02140 0.13860 B: UNDER SUPFRIMPOSED DEAD LOAD AND LIVE LOAD (Composite Girder) Section (m) 0.02140 0.13846 0.13846 B: COLON (mail AREA (m) 12.4843 0.29867 0.02140 0.13846 DEAD LOAD CALCULATIONS The dead loads consoldered in the calculations include (1) Circler self-weight, (2) T		DEPAR	TMENT OF P	UBLIC WORKS A	ND HIGHWA	AYS	BRIDGE ID	:	PAGE :			
Not SECTION PROPERTIES The section properties of the steel I-girder on each section are calculated and given in the table below: A UNDER DEAD LOAD (Non-composite Girder) Section $\frac{m(2)}{m(2)}$ Where $\frac{m(2)}{m(2)}$ Where $\frac{m(2)}{m(2)}$ Where $\frac{m(2)}{m(2)}$ Where $\frac{m(2)}{m(2)}$ Where $\frac{m(2)}{m(2)}$ Where $\frac{m(2)}{m(2)}$ Section $\frac{m(2)}{$		LOAE) RATIN	IG CALC	ULATIC	DNS	BRIDGE NAME	: SIG SIMF	PLE			
SECTION PROFERIES The section properties of the steel I-girder on each section are calculated and given in the table below: A UNDER DEAD LOAD (Non-composite Girder) Scritcon	Deman	D FORC	ES						NOTE			
The section properties of the steel l-girder on each section are calculated and given in the table below: A UNDER DEAD LOAD (Non-composite Girder) Scrinon	SECTION	PROPERTIES										
The section properties of the steel I-girder on each section are calculated and given in the table below: A UNDER DEAD LOAD (Non-composite Girder) $\frac{\text{SECIION}}{(m2)} \frac{1}{(m3)} \frac{1}{$												
A UDDER DEAD LOAD (Non-composite Girder) $\frac{SCCION}{(m2)} \frac{[rela] AREA}{(m2)} \frac{[l]{x}}{(m3)} \frac{VD}{(m4)} \frac{VD}{(m3)} \frac{VT}{(m3)} \frac{S_{RCT}}{(m3)} \frac{S_{RCT}$	The sec	ne section properties of the steel I-girder on each section are calculated and given in the										
A UNDER DEAD LOAD (Non-composite Girder) $\frac{\text{SECTION}}{(m,2)} \frac{\text{Telal} ABEA}{(m,2)} \frac{1z}{(m,3)} \frac{Yb}{(m,3)} \frac{Yb}{(m)} \frac{Yb}{$		0000.										
$\frac{\text{SECTION}}{(m^2)} \frac{\text{Total AREA}}{(m^3)} \frac{\text{Te}}{(m^4)} \frac{\text{Te}}{(m^4)} \frac{\text{Yb}}{(m)} \frac{\text{Yt}}{(m)} \frac{\text{Secr}}{(m)} \frac{\text{Secr}}{(m^5)} \frac{\text{Secr}}{(m^2)} \frac{\text{Secr}}{(m^2)} \frac{\text{Secr}}{(m^2)} \frac{\text{Secr}}{(m^2)} \frac{\text{Secr}}{(m^2)} \frac{\text{Secr}}{(m^4)} \frac{\text{Secr}}{(m^4)} \frac{\text{Yb}}{(m)} \frac{\text{Yf}}{(m)} \frac{\text{Secr}}{(m^2)} \frac{\text{Secr}}{(m^5)} \text{S$	A. UNDE	r dead loa	D (Non-con	nposite Girder)								
$\frac{\text{SCCION}}{\text{(m2)}} \frac{(m2)}{(m2)} \frac{(m3)}{(m3)} \frac{(m)}{(m3)} \frac{(m)}{(m3)} \frac{(m^3)}{(m^3)} \frac{(m^3)}{(m^3)$		Total AREA	Web ARFA	lz	Yb	Yt	S _{BOT}	S _{TOP}				
A 0.02140 0.01620 0.00863 0.89407 0.94693 0.00946 0.00931 B 0.02168 0.01620 0.01387 0.89407 0.94693 0.01551 0.01444 C 0.03205 0.01620 0.01387 0.89407 0.94693 0.01551 0.01444 C 0.03205 0.01620 0.01387 0.84924 0.99776 0.02045 0.01741 B UNDER SUPERIMPOSED DEAD LOAD AND LIVE LOAD (Composite Girder) Sign Sign Sign Sign Sign A 0.09528 0.01620 0.02492 1.83435 0.18847 0.01524 0.13435 B 0.08528 0.01620 0.02492 1.83435 0.18847 0.01524 0.13435 C 0.08526 0.01620 0.024189 1.54813 0.2887 0.02706 0.14016 DEAD LOAD CALCULATIONS The dead loads considered in the calculations include (1) Girder self-weight. (2) Tributary area of slab. (3) Barrier ralls (Assumed to be equally distributed among girders). (4) Wearing course. Self-weight of girder = (0.02768 Sq.m.) x (6.10m) x 77 / 35.000 m <th< td=""><td>SECTION</td><td>(m2)</td><td>(m2)</td><td>(m4)</td><td>(m)</td><td>(m)</td><td>(m³)</td><td>(m³)</td><td></td></th<>	SECTION	(m2)	(m2)	(m4)	(m)	(m)	(m ³)	(m ³)				
B 0.02786 0.01520 0.01337 0.94093 0.01551 0.01464 C 0.03205 0.01620 0.01737 0.84924 0.99776 0.02045 0.01741 B. UNDER SUPERIMPOSED DEAD LOAD AND LIVE LOAD (Composite Girder) Secr. Since Since Since SECTION Total AREA IZ Yb Y1 Secr. Since A 0.07900 0.01620 0.02492 1.63453 0.18547 0.01524 0.13440 C 0.08965 0.01620 0.02492 1.63453 0.02867 0.02706 0.14016 DEAD LOAD CALCULATIONS The dead loads considered in the calculations include (1) Girder self-weight, (2) Tibutary area of slab, (3) Barrier rais (Assumed to be equally distributed among girders). (4) Wearing course. Self-weight of girder = (0.02140 Sq.m.) x (6.10m) x.77 35.000 m = 0.287 KN/m Self-weight of girder = (0.02768 Sq.m.) x (13.90m) x.77 35.000 m =<	А	0.02140	0.01620	0.00863	0.89308	0.92692	0.00966	0.00931				
C 0.01205 0.01620 0.01737 0.84924 0.99776 0.02045 0.01741 B. UNDER SUPERIMPOSED DEAD LOAD AND LIVE LOAD (Composite Girder) Score (m ²) 0.02706 0.014016 0.0645 0.01620 0.03412 1.54813 0.2987 0.02706 0.14016 0.0621 0.002706 0.01410 1.54810	В	0.02768	0.01620	0.01387	0.89407	0.94693	0.01551	0.01464				
B. UNDER SUPERIMPOSED DEAD LOAD AND LIVE LOAD (Composite Girder) $\frac{\text{section}}{\text{a}} \frac{\text{lotal} AREA}{10} \frac{\text{lz}}{(m^4)} \frac{\text{ly}}{(m^4)} \frac{\text{ly}}{(m^4)} \frac{\text{sect}}{(m^5)} \frac{\text{sec}}{(m^5)} \frac{\text{sec}}$	С	0.03205	0.01620	0.01737	0.84924	0.99776	0.02045	0.01741				
$\frac{\text{SECTION}}{(m2)} \frac{\text{forlal} AREA}{(m2)} \frac{\text{fr}}{(m2)} \frac{\text{fr}}{(m4)} \frac{\text{fr}}{(m)} \frac{\text{fr}}{(m)} \frac{\text{fr}}{(m)} \frac{\text{fr}}{(m^3)} \frac{\text{fr}}$	B. UNDEI	R SUPERIMPC)SED DEAD I	_OAD AND LIVE	LOAD (Con	nposite Girc	ler)					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0507101	, Total AREA	Web AREA	lz	Yb	Yt	S _{BOT}	S _{TOP}				
A 0.07900 0.01620 0.02492 1.63453 0.18547 0.01524 0.13435 B 0.08528 0.01620 0.03412 1.59443 0.24657 0.02140 0.13435 C 0.08965 0.01620 0.04189 1.54813 0.29887 0.02706 0.14016 DEAD LOAD CALCULATIONS The dead loads considered in the calculations include (1) Girder self-weight, (2) Tributary area of slab, (3) Barrier rails (Assumed to be equally distributed among girders). (4) Wearing course. Self-weight of girder = (0.02140 Sq.m.) x (6.10m) x 77 / 35.000 m = 0.287 KN/m = (0.02768 Sq.m.) x (13.20m) x 77 / 35.000 m = 0.287 KN/m = (0.03205 Sq.m.) x (13.90m) x 77 / 35.000 m = 0.267 KN/m = (0.03205 Sq.m.) x (13.90m) x 77 / 35.000 m = 0.267 KN/m Self-weight (ributary) = (0.18m) (3.20m) (24 KN/m ³) = 13.824 KN/m Self-weight (ributary) = (0.18m) (3.20m) (24 KN/m ³) = 13.824 KN/m Self-weight (ributary) = (0.18m) (3.20m) (24 KN/m ³) =	SECTION	(m2)	(m2)	(m4)	(m)	(m)	(m ³)	(m ³)				
B 0.08528 0.01620 0.03412 1.59443 0.24657 0.02140 0.13840 C 0.08965 0.01620 0.04189 1.54813 0.29887 0.02706 0.14016 DEAD LOAD CALCULATIONS The dead loads considered in the calculations include (1) Girder self-weight. 0.02706 0.287 KN/m (2) Tributary area of slab, (3) Barrier rails (Assumed to be equally distributed among girders). (4) Wearing course. Self-weight of girder 0.02140 Sq.m.) x (6.10m) x 77 / 35.000 m = 0.287 KN/m Self-weight of girder = (0.02140 Sq.m.) x (14.20m) x 77 / 35.000 m = 0.287 KN/m Self-weight of girder = (0.02140 Sq.m.) x (14.20m) x 77 / 35.000 m = 0.287 KN/m Slab Weight (tributary) = (0.3205 Sq.m.) x (13.20m) (22 KN/m ³) = 13.824 KN/m Barrier rail = 2 (2 4.6 / 3) = 3.620 KN/m = 12.523 KN/m	A	0.07900	0.01620	0.02492	1.63453	0.18547	0.01524	0.13435				
DEAD LOAD CALCULATIONS The dead loads considered in the calculations include (1) Girder self-weight, (2) Iributary area of slab, (3) Barrier rails (Assumed to be equally distributed among girders). (4) Wearing course. Self-weight of girder = $(0.02140 \text{ Sq.m.}) \times (6.10\text{m}) \times 77 / 35.000 \text{ m} = 0.287 \text{ KN/m}$ $= (0.02768 \text{ Sq.m.}) \times (14.20\text{m}) \times 77 / 35.000 \text{ m} = 0.980 \text{ KN/m}$ $= (0.02768 \text{ Sq.m.}) \times (14.20\text{m}) \times 77 / 35.000 \text{ m} = 0.980 \text{ KN/m}$ $= (0.03205 \text{ Sq.m.}) \times (13.90\text{m}) \times 77 / 35.000 \text{ m} = 0.980 \text{ KN/m}$ $= (0.287 + 0.865 + 0.980) \times 15\%$ = 0.267 KN/m Slab Weight (fributary) = $(0.18\text{m}) (3.20\text{m}) (24 \text{ KN/m}^3)$ = 3.3647 KN/m Barrier rail $= 2 (4.6 / 3)$ = 22.099 KN/m = 16.223 KN/m = 16.223 KN/m = 16.223 KN/m Dead Load Moment at Midspan, $M_{DL} = 16.223 \times 35.00^2 / 8$ $= 2484.1 \text{ KN-m}$ Superimposed Dead Load Moment $= 6.587 \times 35.00^2 / 8$ $= 2484.1 \text{ KN-m}$ Superimposed Dead Load Moment $= 6.587 \times 35.00^2 / 8$ $= 1008.6 \text{ KN-m}$ at Midspan, M_{SDL} $= 16.223 \times 35.00 / 2 = 283.9 \text{ KN}$ Superimposed Dead Load Shear at support, V_{DL} $= 16.223 \times 35.00 / 2 = 283.9 \text{ KN}$ $W_{DL} = 16.223 \text{ KN/m} W_{SDL} = 6.587 \text{ KN/m}$	В	0.08528	0.01620	0.03412	1.59443	0.24657	0.02140	0.13840				
DEAD LOAD CALCULATIONS The dead loads considered in the calculations include (1) Girder self-weight, (2) Titolutary area of slab, (3) Barrier rails (Assumed to be equally distributed among girders). (4) Wearing course. Self-weight of girder = (0.02140 Sq.m.) x (6.10m) x 77 / 35.000 m = 0.287 KN/m = (0.02768 Sq.m.) x (14.20m) x 77 / 35.000 m = 0.286 KN/m = (0.03205 Sq.m.) x (14.20m) x 77 / 35.000 m = 0.980 KN/m = (0.03205 Sq.m.) x (14.20m) x 77 / 35.000 m = 0.980 KN/m = (0.03205 Sq.m.) x (14.20m) x 77 / 35.000 m = 0.980 KN/m = (0.03205 Sq.m.) x (13.90m) x 77 / 35.000 m = 0.980 KN/m = (0.02764 Sq.m.) x (14.20m) x 77 / 35.000 m = 0.980 KN/m = (0.0276 Sq.m.) x (13.90m) (24 KN/m ³) = 13.824 KN/m Barrier rail = 2 (4.6 /3) = 3.067 KN/m Wearing course = (0.05m) (3.20m) (22 KN/m ³) = 3.520 KN/m • Total Uniform Dead Load of Girder, w _{DL} = 16.223 KN/m • Total Uniform Dead Load of Girder, w _{DL} = 16.223 KN/m • Total Uniform Dead Load of Girder, w _{DL} = 6.587 KN/m Superimposed Dead Load Moment = 6.587 x 35.00 ² /8 = 2484.1 KN-m Superimposed Dead Load Moment = 6.587 x 35.00 ² /8 = 1008.6 KN-m at Midspan, M _{SDL} = 16.223 x 35.00 / 2 = 283.9 KN Superimposed Dead Load Shear at support, V _{SDL} = 6.587 x 35.00 / 2 = 115.3 KN	C	0.08905	0.01020	0.04189	1.04013	0.29007	0.02700	0.14010				
$= (0.02505 \text{ sq.m.}) \times (14.2\text{ m}) \times 77 / 35.000 \text{ m} = 0.980 \text{ KN/m} = (0.03205 \text{ sq.m.}) \times (13.90\text{ m}) \times 77 / 35.000 \text{ m} = 0.980 \text{ KN/m} = (0.287 + 0.865 + 0.980) \times 15\% = 0.267 \text{ KN/m}$ Slab Weight (tributary) = (0.18m) (3.20m) (24 KN/m ³) = 13.824 KN/m Barrier rail = 2 (4.6 /3) = 3.067 KN/m Wearing course = (0.05m) (3.20m) (22 KN/m ³) = 3.520 KN/m = 22.809 KN/m • Total Uniform Load of Girder, w = 22.809 KN/m • Total Uniform Superimposed Dead Load of Girder, w _{DL} = 16.223 KN/m • Total Uniform Superimposed Dead Load of Girder, w _{SDL} = 6.587 KN/m Dead Load Moment at Midspan, M _{DL} = 16.223 x 35.00 ⁻² /8 = 2484.1 KN-m Superimposed Dead Load Moment = 6.587 x 35.00 ⁻² /8 = 1008.6 KN-m at Midspan, M _{SDL} = 16.223 x 35.00 ⁻² /8 = 1008.6 KN-m Superimposed Dead Load Shear at support, V _{DL} = 16.223 x 35.00 / 2 = 283.9 KN Superimposed Dead Load Shear at support, V _{SDL} = 6.587 x 35.00 / 2 = 115.3 KN W _{DL} = 16.223 kN/m W _{SDL} = 6.587 kN/m	Self-weig	ght of girder	= (0).02140 Sq.m.)	x (6.10r	m) x 77	/ 35.000 m	= 0.287 - 0.865	KN/m			
$= (0.287 + 0.865 + 0.980) \times 15\% = 0.267 KN/m$ Slab Weight (Iributary) = (0.18m) (3.20m) (24 KN/m ³) = 13.824 KN/m Barrier rail = 2 (4.6 / 3) = 3.067 KN/m Wearing course = (0.05m) (3.20m) (22 KN/m ³) = 3.520 KN/m • Total Uniform Load of Girder, w = 22.809 KN/m • Total Uniform Superimposed Dead Load of Girder, w _{DL} = 16.223 KN/m • Total Uniform Superimposed Dead Load of Girder, w _{SDL} = 6.587 KN/m Dead Load Moment at Midspan, M _{DL} = 16.223 x 35.00 ² /8 = 2484.1 KN-m Superimposed Dead Load Moment = 6.587 x 35.00 ² /8 = 1008.6 KN-m at Midspan, M _{SDL} = 16.223 x 35.00 / 2 = 283.9 KN Superimposed Dead Load Shear at support, V _{SDL} = 6.587 x 35.00 / 2 = 115.3 KN W _{DL} = 16.223 kN/m W _{SDL} = 6.587 kN/m			= (().03205 Sq.m.)	x (13.90	m) x 77	/ 35.000 m	= 0.980	KN/m			
Slab Weight (tributary) = $(0.18m) (3.20m) (24 \text{ KN/m}^3)$ = 13.824 KN/m Barrier rail = $2(4.6 / 3)$ = 3.067 KN/m Wearing course = $(0.05m) (3.20m) (22 \text{ KN/m}^3)$ = 3.520 KN/m • Total Uniform Load of Girder, w • Total Uniform Dead Load of Girder, w _{DL} = 16.223 KN/m • Total Uniform Superimposed Dead Load of Girder, w _{SDL} = 6.587 KN/m Dead Load Moment at Midspan, M _{DL} = $16.223 \text{ x} 35.00^2 / 8$ = 2484.1 KN-m Superimposed Dead Load Moment = $6.587 \text{ x} 35.00^2 / 8$ = 1008.6 KN-m at Midspan, M _{SDL} = $16.223 \text{ x} 35.00^2 / 8$ = 1008.6 KN-m Superimposed Dead Load Shear at support, V _{DL} = $16.223 \text{ x} 35.00 / 2$ = 283.9 KN Superimposed Dead Load Shear at support, V _{SDL} = $6.587 \text{ x} 35.00 / 2$ = 115.3 KN W_{DL} = $16.223 \text{ kN/m} W_{SDL}$ = 6.587 kN/m			= (0.	287 + 0.865 + 0.9	980) x 15%	,		= 0.267	KN/m			
Barrier rail = 2 (4.6 /3) = 3.067 KN/m Wearing course = $(0.05m) (3.20m) (22 KN/m^3)$ = $3.520 KN/m$ • Total Uniform Load of Girder, w • Total Uniform Dead Load of Girder, w _{DL} = $16.223 KN/m$ • Total Uniform Superimposed Dead Load of Girder, w _{SDL} = $6.587 KN/m$ Dead Load Moment at Midspan, M _{DL} = $16.223 x 35.00^2 /8$ = $2484.1 KN-m$ Superimposed Dead Load Moment = $6.587 x 35.00^2 /8$ = $1008.6 KN-m$ at Midspan, M _{SDL} = $16.223 x 35.00^2 /8$ = $1008.6 KN-m$ Dead Load Shear at support, V _{DL} = $16.223 x 35.00 / 2$ = $283.9 KN$ Superimposed Dead Load Shear at support, V _{SDL} = $6.587 x 35.00 / 2$ = $115.3 KN$ W_{DL} = $16.223 kN/m W_{SDL}$ = $6.587 kN/m$	Slab We	ight (Tributary	(0. ⁻	18m) (3.20m)	(24 KN/m ³)		= 13.824	KN/m			
Wearing course = $(0.05m)$ $(3.20m)$ $(22 KN/m^3)$ = $3.520 KN/m$ • Total Uniform Load of Girder, w • Total Uniform Dead Load of Girder, w _{DL} = $16.223 KN/m$ • Total Uniform Superimposed Dead Load of Girder, w _{SDL} = $6.587 KN/m$ Dead Load Moment at Midspan, M _{DL} = $16.223 x 35.00^2 /8$ = $2484.1 KN-m$ Superimposed Dead Load Moment = $6.587 x 35.00^2 /8$ = $1008.6 KN-m$ at Midspan, M _{SDL} = $16.223 x 35.00 / 2$ = $283.9 KN$ Superimposed Dead Load Shear at support, V _{DL} = $6.587 x 35.00 / 2$ = $115.3 KN$ W_{DL} = $16.223 kN/m W_{SDL}$ = $6.587 kN/m$	Barrier ra	ail	= 2 (4.6 /3)				= 3.067	KN/m			
• Total Uniform Load of Girder, w = 22.809 KN/m • Total Uniform Dead Load of Girder, w _{DL} = 16.223 KN/m • Total Uniform Superimposed Dead Load of Girder, w _{SDL} = 6.587 KN/m Dead Load Moment at Midspan, M _{DL} = 16.223 x 35.00^2 /8 = 2484.1 KN-m Superimposed Dead Load Moment = 6.587 x 35.00^2 /8 = 1008.6 KN-m at Midspan, M _{SDL} = 16.223 x 35.00^2 /8 = 1008.6 KN-m Dead Load Shear at support, V _{DL} = 16.223 x 35.00 / 2 = 283.9 KN Superimposed Dead Load Shear at support, V _{SDL} = 6.587 x 35.00 / 2 = 115.3 KN W_{DL} = 16.223 kN/m W_{SDL} = 6.587 kN/m W_{DL} = 16.223 kN/m W_{SDL} = 6.587 kN/m	Wearing	course	= (0.0	05m) (3.20m)	(22 KN/m ³)		= 3.520	KN/m			
• Iotal Uniform Dead Load of Girder, w_{DL} = 16.223 KN/m • Total Uniform Superimposed Dead Load of Girder, w_{SDL} = 6.587 KN/m Dead Load Moment at Midspan, M_{DL} = 16.223 x 35.00 ² /8 = 2484.1 KN-m Superimposed Dead Load Moment = 6.587 x 35.00 ² /8 = 1008.6 KN-m at Midspan, M_{SDL} = 16.223 x 35.00 / 2 = 283.9 KN Dead Load Shear at support, V_{DL} = 16.223 x 35.00 / 2 = 115.3 KN Superimposed Dead Load Shear at support, V_{SDL} = 6.587 kN/m W_{DL} = 16.223 kN/m W_{SDL} = 6.587 kN/m M_{DL} = 16.223 kN/m W_{SDL} = 6.587 kN/m			 Tota 	I Uniform Load	of Girder, w			= 22.809	KN/m			
Dead Load Moment at Midspan, $M_{DL} = 16.223 \times 35.00^2 / 8 = 2484.1 \text{ KN-m}$ Superimposed Dead Load Moment = $6.587 \times 35.00^2 / 8 = 1008.6 \text{ KN-m}$ at Midspan, M_{SDL} Dead Load Shear at support, V_{DL} = $16.223 \times 35.00 / 2 = 283.9 \text{ KN}$ Superimposed Dead Load Shear at support, V_{SDL} = $6.587 \times 35.00 / 2 = 115.3 \text{ KN}$ $W_{DL} = 16.223 \text{ kN/m} W_{SDL} = 6.587 \text{ kN/m}$			Tota	II Unitorm Dead	Load of Gi	rder, w _{DL}	f Girder w	= 16.223	KN/m KN/m			
Dead Load Moment at Midspan, $M_{DL} = 16.223 \times 35.00^{2} / 8 = 2484.1 \text{ KN-m}$ Superimposed Dead Load Moment = $6.587 \times 35.00^{2} / 8 = 1008.6 \text{ KN-m}$ at Midspan, M_{SDL} Dead Load Shear at support, V_{DL} = $16.223 \times 35.00 / 2 = 283.9 \text{ KN}$ Superimposed Dead Load Shear at support, V_{SDL} = $6.587 \times 35.00 / 2 = 115.3 \text{ KN}$ $W_{DL} = 16.223 \text{ kN/m} W_{SDL} = 6.587 \text{ kN/m}$			• 1018	n onnonn supen	imposed De	au Ludu O	GILCEL, WSDL	- 0.00/	NIN/111			
Superimposed Dead Load Moment = 6.587×35.00^2 /8 = 1008.6 KN-m at Midspan, M _{SDL} Dead Load Shear at support, V _{DL} = 16.223×35.00 / 2 = 283.9 KN Superimposed Dead Load Shear at support, V _{SDL} = 6.587×35.00 / 2 = 115.3 KN W_{DL} = $16.223 \text{ kN/m} W_{SDL}$ = 6.587 kN/m 35.000 m	Dead Lo	ad Moment	at Midspar	n, M _{DL} =	16.223 x	35.00 2	/8	= 2484.1	KN-m			
Dead Load Shear at support, V_{DL} = 16.223 x 35.00 / 2 = 283.9 KN Superimposed Dead Load Shear at support, V_{SDL} = 6.587 x 35.00 / 2 = 115.3 KN W_{DL} = 16.223 kN/m W_{SDL} = 6.587 kN/m 35.000 m	Superim at Midsp	posed Dead ban, M _{sDL}	Load Mom	ient =	6.587 x	35.00 ²	/8	= 1008.6	KN-m			
Superimposed Dead Load Shear at support, V_{SDL} = 6.587 x 35.00 / 2 = 115.3 KN W_{DL} = 16.223 kN/m W_{SDL} = 6.587 kN/m 35.000 m	Dead Lo	ad Shear at	support, V _I	DL	=	16.223	x 35.00 / 2	= 283.9	KN			
$W_{DL} = 16.223 \text{ kN/m} W_{SDL} = 6.587 \text{ kN/m}$	Superim	posed Dead	Load Shea	r at support, V _s	idl =	6.587	x 35.00 / 2	= 115.3	KN			
→ 35.000 m			W _{DL} =	= 16.223 kN	I/m W _{SDL}	= 6.587	kN/m					
35.000 m												
		π					<i>\</i>					
		-	<u> </u>	35.0	000 m							

1	1	DEPARTMENT OF PUBLI	C WORKS AND HIGH	WAYS	BRIDGE I	D :		PAGE	
		LOAD RATING	CALCULAT	IONS	BRIDGE I	NAME :	SIG SIMP	LE	
									NOTES
L	LIVE LOA	D CALCULATIONS							
T	The carri	ageway width is 7.35m curb	to curb. Thus, the b	ridge can ca	arry 2-lane	es of traffic.			
T	The distri	bution of wheel loads for tw	o traffic lanes shall	be taken as	S/1.676				
	• N	umber of live load wheel lin	e = 3.20	/ 1.829		=	1.750		
	• In	npact factor, I = 15.2	4 / (35.00 +	38.00)		=	0.209		
T e	The live l and are	oad moments and shear va used to determine the live I	lues are taken from bad demand forces	the tables in s.	Appendi	x III on this m	anual		
	• N sp	1ax. MS18 moment for 3 Dan without impact/whel lin	85.00 m e			=	819.80	KN-m	
	• Th In	nus, MS18 moment with npact at midspan	M _{LL} = 1.750) 1.209	(819.80)	=	1733.75	KN-m	
	• N	1ax. MS18 shear at the suppo	ort/wheel line			=	143.50	KN	
	• Tł	nus, MS18 shear	V _{LL} = 1.750) 1.209	(143.50)	=	303.48	KN	
		ESTIMATED LOAD DEMANDS A	T GIRDER SECTIONS (M	IS18)			_		
		LOADING	0.01 m	Sect. B (D	m	At Midspar 17.50 m	1		
		Dead load moment, kN-m	2.8	275	.8	2484.1			
		Dead load shear, kN	283.7	267	.7	0.0			
		SDL moment, kN-m	1.2	112	.0	1008.6			
		SDL shear, kN	115.2	108	.7	0.0			
		LL Moment + Impact, kN-m	3.1	305	.0	1733.6			
		LL Shear + Impact, kN	314.7	305	.0	118.7			
	37 .	DATE		CHECKED BY			DATE		

	DEPARTMENT OF PUBLIC V	VORKS AND HIGHW	IAYS E	Bridge	EID	:	P	AGE :
	Load Rating (CALCULATIO	ONS E	Bridge	E NAME	: SIC	6 SIMPLE	
			•					NOTES
5.5 LOAD 3	TRESS CALCULATIONS							
The res demai	sulting stresses due to bendir nds and the appropriate sec	g and shear are tion properties a	calculated t given sect	using ion lo	the give cations u	en load under		
consid	eration. The stress results are	shown in the tab	le below.					
		- ··						
Estima	ted Stress Demands at Girde	At Support	Sect. B (Dur	mmv)	In At Mid	Mpa span		
	LOADING	0.01 m	1.00 m	1	17.50) m		
Dead Lo	ad Moment, Top	0.30	18.84		142	.69		
Dead Lo	ad Moment, Bottom	-0.29	-17.78	3	-121	.47		
SDL Mon	nent, lop	0.01	0.81		1.2	20		
SDL Mon	d Mamont Tan	-0.08	-5.23		-37.	27		
Live Loa	d Moment, TOP	_0.02	2.20 _1/ 2F	5	-64	07		
Dead Lo	ad Shear	17.51	16.52	,	04.	0		
SDL Shea	ar	7.11	6.71		0.0	0		
Live Loa	d Shear	19.43	18.83		7.3	3		
-ve : ter	sion							
+Ve : co	ompression							
C. LOAD	RATING BY ALLOWA	BLE STRESS M	ETHOD (AS₩	1)			
			、		-			
ALLOW	ADLE STRESS CALCULATIONS							
C.1.1	Allowable Stresses for Co	ncrete and Steel						
The act	ual material properties for conc	rete and steel can	be obtained	d from	as-built p	lans.		
Concre	ete : f'c = fc / 0.40 (fc = 8.27 Mpa)	= 8.3 / 0.4	= 20. (Aft	7 Mp er 195	oa 59, f'c=	20.7	Mpa)	
Steel	: fs = 265.0 Mp	a => fy =	482.0	Ира				
C.1.2	Compression and Tensile	Stresses						
Note th	nat the section is fully braced	d at this location.						
i. Allo	wable compressive stress at	inventory	0.55 fy	=	265.0	Мра		
ii. Allo	wable comp./tensile stress a	t operating	0.75 fy	=	361.5	Мра		
iii. Allo	wable tensile stress at inven	cory	0.55 fy	=	265.0	Мра		
C.1.3	Allowable Shear Stress							
i. Allo	wable shear stress at invento	ory	fy/3	=	160.7	Мра		
ii. Allo	wable shear stress at operat	ing	(0.45 fy	() =	216.9	Мра		
	I	r						
RATED BY :	DATE :	C	HECKED BY :			DA	IE :	

						NOT
LOAD RA	TING CALCULAT	IONS			1	
The ratin	g factor (RF) in t	he Allowable Stress Me	thod (ASD) is	given by:		
RF =	R - A ₁ D	Where : $A_1 =$	1.0			
	A ₂ L (1 + I)	A ₂ =	1.0			
and s	ubstituting the v	alues will give us the re	esults as prese	ented in the table		
Delov	/:					
	RATING FAC	TOR CALCULATIONS	USING ALLO	WABLE STRESS METH	OD	
Section	on Description	INVENTORY RA	TING	OPERATING RA	ATING	
	Stress at top	265.0 - 0.31	= 13234.50	361.5 - 0.31	= 18059.50	
	Fiber	0.02		0.02		
۸+	Stress at Bot	-265.00.37		-3615037		
Supp	ort Fiber	-0.21	= 1260.14	-0.21	= 1719.67	
	Shear	160.7 - 24.62	= 7.01	216.9 - 24.62	= 9.90	
		19.42	- 7.01	19.42	- 7.70	
	Stress at top	265.0 - 19.64	= 111.53	361.5 - 19.64	= 155.39	
	Fiber	2.20		2.20		
Soct	P Stress at Bot	-265.023.01		-361 523 01		
Dumr	ny Fiber	-14.25	= 16.98	-14.25	= 23.75	
	Shear	160.7 - 23.23	= 7.30	216.9 - 23.23	= 10.29	
		18.83	- 7.50	18.83	- 10.27	
	Stress at top	265.0 - 149.89	= 9.31	361.5 - 149.89	= 17.11	
	Fiber	12.37		12.37		
At	Stress at Bot	-265.0158.72		-361.5158.72		
Midsp	an Fiber	-64.07	= 1.66	-64.07	= 3.16	
	Shear	160.7 - 0.00	= 21.92	216.9 - 0.00	= 29.59	
		7.33		7.33		
		LOAD RATING	CALCULATI	ONS		
		(Rating Live Load = N	/IS18 W=33 I	Metric Tons		
Section	on Description	INVENTORY RATING	(Tons)	OPERATING RATIN	IG (Tons)	
At	Moment	1260.14 x 33 =	41584.7	1719.67 x 33	= 56749.0	
Supp	ort Shear	7.01 x 33 =	231.2	9.90 x 33	= 326.7	
Sect.	B Moment	$16.98 \times 33 =$	560.4	23.75 x 33 =	= 783.9	
Durnr	Moment	$1.30 \times 33 =$	240.9 54 7	10.29 X 33 =	= 339.4 = 104.4	
Midsp	an Shear	21.92 x 33 =	723.5	29.59 x 33	= 976.5	
· · ·	1	1				
Rating	Factors at sectio	ns At Support, Sect. B, and	l At Midspan h	ave values over than 1,		

The pro live loa vehicle	ocedure for d. Posting I es.	load pos ive loads	ting is sim Type 1-1,	ilar to the Type 1-2 a	above us and Type	sing load 12-2 will b	posting v be used as	ehicles fo s live loac	r I
DEMAN	ID FORCES I	FOR LOAD) POSTING		5				
The de	mand force	es are cal	culated b	ased on 1	the Appe	ndix III of t	the Manu	al using	
the Typ	e 1-1, 1-2 a	nd 12-2 p	osting vel	nicles.					
POSTIN	g vehicle	Demand	FORCES A	AT SECTION	NS AT SUP	Port, sec	T. B AND	AT MIDSP	AN
Deman	d	TYPE 1-1			TYPE 1-2			TYPE 12-2	
Forces	At Support	SECT. B Dummy	At Midspan	At Support	SECT. B Dummy	At Midspan	At Support	SECT. B Dummy	At Midspan
Momer (kN-m)	t 1.72	167.24	1470.77	2.62	254.05	2190.98	3.30	319.22	2667.39
Shear (kN)	172.24	167.24	83.99	261.98	254.05	121.95	330.38	319.22	133.28
DF =	1.750	I = 1.2	09						
below:		TYPE 1-1			TYPF 1-2	(In Mpa)		TYPF 12-2	
Deman Forces	At	SECT. B	At	At	SECT. B	At	At	SECT. B	At
Тор	0.01	1 21	10.40		1.84	15.63		2 21	19.03
Fiber Bottom	-0.11	-7.81	-54.35	-0.17	-11.87	-80.97	-0.22	-14.92	-98.57
Fiber	10.63	10.32	5 18	16.17	15.68	7 5 3	20.30	10.70	8.03
Shear	10.03	10.32	5.16	10.17	15.08	7.55	20.39	19.70	0.25
Using th	are obtaine on.	ed by sub	stituting th	ne posting	g live loac	l stress de	mands in	the rating	3

INTERIOR SIG CONTINUOUS

A. GENERAL

BACK TO MENU

			A1. BRID	OGE DESC	RIPTION						
Bridge Loc	ation	REGION									
Bridge Na	me										
Bridge	Simple or Cor	ntinuous	С	Steel I-Girc	Steel I-Girder Bridge						
Туре	Number of Sp	an	2								
Bridge Wic	Ith (curb to cu	rb) (m)	24.00								
Number of	f Lanes		6								
Bridge Ler	igth (m)		27.000	27.000				=54.000m			
Year Built	-		1967								
Nos. of Girder			13	Multiple Girder composite for live load							
Structure	Girder Spaci	ng (m)	2.020	on centers							
	Substructure		Wall Type R	C Pier and	RC Cantileve	r Abutment	S				
Wearing	thickness (mr	n)	50								
Course	material		Asphalt								
Matorial D	roportion		fc=	8.3	Мра	fs=	137.9	Мра			
Material P	lopenies		f'c=	20.7	Мра	fy=	248.2	Мра			
			Weight of b	barrier rail V	/br =	3.600) KN/m				
Accumptio	n		Concrete l	Jnit Weight '	Nu =	24.0) KN/m ³				
Assumption			Steel Girde	r Unit Weigh	it Ws =	77.0) KN/m ³				
			Asphalt Uni	t Weight Wa) =	22.0 KN/m ³					
Others			Rating Live	Load is AAS	ihto MS18 (H	S20-44)					

Matorial	Year of	foorfu		fc or fs		
watenai	Construction	I C OF TY	Inventory	Operating	Posting	
	Prior to 1905	179.3	96.5	134.4	96.5	1
Structural	1905 to 1936	206.8	110.3	155.1	110.3	
Bending	1936 to 1963	227.5	124.1	168.9	124.1	
bending	after 1963	248.2	137.9	186.2	137.9	
Structural	Prior to 1905	179.3	58.6	79.3	58.6	
Steel	1905 to 1936	206.8	65.5	93.1	65.5	
Web	1936 to 1963	227.5	75.8	103.4	75.8	
Shear	after 1963	248.2	82.7	110.3	82.7	
	Prior to 1954	227.5	124.1	172.4	124.1	
Dobor	after 1954	275.8	137.9	193.1	137.9	
Rebai	Grade 50	344.7	189.8	224.1	137.9	*рс
	Grade 60	413.7	227.5	248.2	165.5	*рс
	Prior to 1959	17.2	6.9	10.3	6.9	
Conorata	after 1959	20.7	8.3	13.1	8.3	
Concrete	1977 to 1981	27.6	11.0	16.5	11.0	*рс
	after 1981	31.0	12.4	18.6	12.4	*рс

A2. BRIDGE LAYOUT AND SECTION

GIRDER	LAYOUT
--------	--------

		GIR	DER SECTI	ON			
SECTION	SECTION A	(At Pier)	SECTION B	(Dummy)			
Location (m)	0.01	0	1.000		13.500		
Dimension	b (m)	h (m)	b (m)	h (m)	b (m)	h (m)	
Slab							
2190	0.202	0.170	0.202	0.170	0.202	0.170	*10 (Modular Ratio)
Lifla	0.300	0.062	0.300	0.029	0.300	0.022	
ung	0.000	0.000	0.000	0.000	0.000	0.000	
	0.010	0.810	0.010	0.810	0.010	0.810	
veb	0.000	0.000	0.000	0.000	0.000	0.000	
1.61	0.300	0.062	0.300	0.032	0.300	0.051	
Lig	0.000	0.000	0.000	0.000	0.000	0.000	
Length	2.70	00	2.7	00	16.2	200	

B. DEMAND FORCES

B.1 INPUT AND SECTION PROPERTIES

BO. INPUT	
Slab thickness ts (m)	0.170
Slab width ws (m)	2.020
Span Length L(m)	27.000

B1. PROPERTIES OF STEEL GIRDER SECTIONS							
(1) UNDER DEAD LOAD (NON-COMPOSIE GIRDER)							
SECTION	Total Area	Web Area	Iz (m ⁴)	Y _b (m)	Y _t (m)	S _{xb} (m ³)	S _{xt} (m ³)
A (At Pier)	0.04490	0.00770	0.00750	0.46700	0.46700	0.01607	0.01607
B (Dummy)	0.02600	0.00770	0.00365	0.42192	0.44908	0.00865	0.00813
C (At Midspan)	0.02960	0.00770	0.00390	0.32621	0.55679	0.01197	0.00701
(2) UNDER SUPERI	Mposed D	EAD LOAD	AND LIVE	E LOAD (C	OMPOSIE	GIRDER)	
A (At Pier)	0.07924	0.00770	0.01352	0.70623	0.22777	0.01914	0.05934
B (Dummy)	0.06034	0.00770	0.00795	0.72590	0.14510	0.01095	0.05480
C (At Midspan)	0.06394	0.00770	0.01053	0.67092	0.21208	0.01570	0.04967

Standard Section Area of "SECTION A"	
Original Section Area (m ²)	0.0449

B.2 LOAD DEMAND CALCULATIONS

B2.1 DEAD LOAD CALCULATIONS					
		Section A (At Pier)	0.691		
	Solf woight of Cirdor	Section B (Dummy)	0.400		
	Sell-Weight of Glider	Section C (At Midspar	1.367		
		Stiffener and Bracing	0.307		
Uniform Load por motor of Girdor (KN/m)	Slab Weight	Continuous	8.242		
	Barrier Rail	0.554			
	Asphalt Overlay	2.222			
	Total Load		13.784		
	Total DeadLoad		11.008		
	Total Superimposed D	2.776			

B2.2 LOAD DEMAND MIDSPAN AND SUPPORT OF STEEL GIRDER

Conducting a Structural Analysis, the load demands for the SPG should be obtained separately and input the necessary load demands in the Table below.

Description	At Midspan	At Pier Support
Description	10.8 m	27.0 m
Dead load moments, KN-m	546.52	-1016.85
Dead load shears, KN	-4.24	-184.41
Additional Dead load moments, KN-m	27.65	-51.45
Additional Dead load shears, KN	-0.21	-9.93
MS18 max. positive moment, KN-m	1060.52	0.00
MS18 max. negative moment, KN-m	-273.15	-957.00
MS18 max. positive shear force, KN	83.28	0.00
MS18 max. negative shear force, KN	-84.40	-198.35

B3. LOAD STRESS CALCULATIONS

	B1. PROPERTIES OF STEEL GIRDER SECTIONS						
(1) At Midspan							
	Total Area	Web Area	Iz (m ⁴)	Y _b (m)	Y _t (m)	S _{xb} (m ³)	S _{xt} (m ³)
For Dead Load	0.02960	0.00770	0.00390	0.32621	0.55679	0.01197	0.00701
For Add.DL and Live Load	0.06394	0.00770	0.01053	0.67092	0.21208	0.01570	0.04967
(2) At Pier Support	rt						
For Dead Load	0.04490	0.00770	0.00750	0.46700	0.46700	0.01607	0.01607
For Add.DL and Live Load	0.07924	0.00770	0.01352	0.70623	0.22777	0.01914	0.05934

ESTIMATED STRESS DEMANDS AT GIRDER SECTIONS					
Loading	Location	At Midspan	At Pier Support		
DI momont	Тор	77.95	-63.28		
DEmoment	Bottom	-45.67	63.28		
SDI momont	Тор	0.56	-0.87		
SDL moment	Bottom	-1.76	2.69		
$ = 1$ moment σ	Тор	21.35	-16.13		
	Bottom	-67.55	50.01		
DL shear, v _{DL}		0.55	23.96		
SDL shear, v _{SDL}		0.03	1.29		
LL+I shear, v_{LL+I}		10.82	25.78		

C. LOAD RATING BY ALLOWABLE STRESS METHOD

C1. ALLOWABLE STRESS CALCULATIONS

C.1.1 ALLOWABLE STRESSES FOR CONCRETE AND STEEL						
	Concrete	Allowable S	Stress	fc	8.3	
Material Properties (Mpa)	Conciete	Strength		f'c = fc/0.4	20.7	
	Dobor	Allowable S	Stress	fs	137.9	
	Repai	Strength		fy = fs/0.55	248.2	
C.1.2	COMPRES	SION AND) TENSILE S	STRESSES		
Allowable compressiv	o stross		Inventory		137.9	
Allowable compressiv	e 211.622		Operating		186.2	
Allowable tensile stres	S		Inventory		137.9	
C.1.3 ALLOWABLE SHEAR STRESS						
Allowable Shear Stress		Inven	tory fy/3	82.7		
		Operating 0.45fv		110.3		

C2. LOAD RATING CALCULATIONS

	C2.1 RATING FACTOR CALCULATIONS USING ASM					
Section	Description	Inventory	Operating			
٨.+	Stress at Top Fiber	2.78	5.04			
Al Midshan	Stress at Bottom Fiber	1.34	2.05			
muspan	Shear	7.59	10.14			
At	Stress at Top Fiber	4.57	7.57			
Pier	Stress at Bottom Fiber	1.44	2.40			
Support	Shear	2.23	3.30			

C2.2 LOAD RATING CALCULATIONS					
Section	Description	Rating Li	ive Load (M	etric Tons)	33.0
Section	Description	Inventory		Operating	
At	Moment	1.34	44.2	2.05	67.8
Midspan	Shear	7.59	250.4	10.14	334.6
At	Moment	1.44	47.5	2.40	79.3
Support	Shear	2.23	73.5	3.30	108.9

Depend on the minimum value of Rating Factor > 1 or <1 , instruction in the below cell is automatically shown

Return to GENERAL

Click following the above instruction

Return to GENERAL

Load Posting

D. LOAD POSTING BY LOAD FACTOR METHOD (LFM)

D1. DEMAND FORCES FOR LOAD POSTING VEHICLES

D1.2 POSTING VEHICLE DEMAND FORCES				
Conducting a Structural Analysis, the load demands for the SPG should be obtained separately and input the necessary load demands in the Table below.				
Posting Vehicle	Demand Forces	At Midspan	At Pier Support	
	Moment	657.5	-593.3	
турет-т	Shear	45.8	-109.1	
	Moment	869.3	-784.7	
Type 1-2	Shear	65.0	-154.7	
Type 12-2	Moment	859.0	-775.2	
	Shear	64.1	-152.7	

D1.3 POSTING VEHICLE DEMAND STRESSES				
Posting Vehicle	Demand Forces	At Midspan	At Pier Support	
	Top Fiber	13.24	-10.00	
Type 1-1	Bottom Fiber	-41.88	31.00	
	Shear	5.95	14.18	
	Top Fiber	17.50	-13.22	
Type 1-2	Bottom Fiber	-55.37	41.00	
	Shear	8.45	20.10	
Туре 12-2	Top Fiber	17.29	-13.06	
	Bottom Fiber	-54.71	40.51	
	Shear	8.33	19.84	

E1. LOAD POSTING RATING FACTOR CALCULATIONS (1)						
Posting Vehicle		At Mi	dspan	At Pier Support		
		Inventory	Operating	Inventory	Operating	
	Top Fiber	4.49	8.13	7.38	12.21	
Type 1-1	Bottom Fiber	2.16	3.31	2.32	3.88	
	Shear	13.80	18.43	4.05	6.00	
	Top Fiber	3.39	6.15	5.58	9.23	
Type 1-2	Bottom Fiber	1.63	2.51	1.75	2.93	
	Shear	9.72	12.99	2.86	4.23	
Туре 12-2	Top Fiber	3.43	6.23	5.65	9.34	
	Bottom Fiber	1.65	2.54	1.78	2.97	
	Shear	9.86	13.17	2.89	4.29	

E. LOAD POSTING RATING FACTOR CALCULATIONS

		E2. LO	AD POS	ting ra	TING FAC	CTOR CA	LCULATIO	ONS (2)			
	Vehicle		Inve	ntory			Oper	ating		Postina	
Vehicle Type	Weight (Metric	Mor	nent	Sh	ear	Mon	nent	She	ear	(Metric	
(C	Tons)	RF	LR	RF	LR	RF	LR	RF	LR	Tons)	
(1) SEC	TION A										
MS18	33.0	1.34	44.2	7.59	250.4	2.05	67.8	10.14	334.6	33	
Type 1-1	17.0	2.16	36.7	13.80	234.6	3.31	56.3	18.43	313.4	17	
Type 1-2	27.0	1.63	44.1	9.72	262.5	2.51	67.7	12.99	350.7	27	
Туре 12-2	38.0	1.65	62.8	9.86	374.6	2.54	96.4	13.17	500.5	38	
(2) SEC	TION B										
MS18	33.0	1.44	47.5	2.23	73.5	2.40	79.3	3.30	108.9	33	
Type 1-1	17.0	2.32	39.4	4.05	68.9	3.88	65.9	6.00	102.0	17	
Type 1-2	27.0	1.75	47.4	2.86	77.1	2.93	79.2	4.23	114.2	27	
Туре 12-2	38.0	1.78	67.5	2.89	110.0	2.97	112.8	4.29	162.9	38	
									Load F	Posting	

END AND GO TO DECK SLAB

33T

17T

27T

38T

MS18 Type 1-1

Type 1-2

Type 12-2

	DEPAR	RTMENT OF PU	JBLIC WORKS A	ND HIGHWA	YS I	BRIDGE ID	:	PAGE :
	LOAI) RATIN	IG CALC	ULATIC	N S	BRIDGE NAME	: SIG CON	ITINUOUS
. Demai	ND FORC	ES						NOTES
SECTIO	N PROPERTIES	rties of the	steel I-girder o	on each se	ection are	calculated an	d given in th	le
lable	Jelow.							
A. UND	er dead loa	.D (Non-com	iposite Girder)					
SECTIC	N Total AREA (m2)	Web AREA (m2)	lz (m4)	Yb (m)	Yt (m)	S _{BOT} (m ³)	S _{TOP} (m ³)	
А	0.04490	0.00770	0.00750	0.46700	0.46700	0.01607	0.01607	
В	0.02600	0.00770	0.00365	0.42192	0.44908	0.00865	0.00813	
С	0.02960	0.00770	0.00390	0.32621	0.55679	0.01197	0.00701	
B. UNDI	ER SUPERIMPC	dead l	oad and live	LOAD (Com	nposite Girc	er)		
SECTIC	N Total AREA (m2)	Web AREA (m2)	lz (m4)	Yb (m)	Yt (m)	S _{BOT} (m ³)	S _{TOP} (m ³)	
А	0.07924	0.00770	0.01352	0.70623	0.22777	0.01914	0.05934	
В	0.06034	0.00770	0.00795	0.72590	0.14510	0.01095	0.05480	
С	0.06394	0.00770	0.01053	0.67092	0.21208	0.01570	0.04967	
Slab WBarrier	eight (Tributar <u>)</u> ail	$ \begin{array}{rcl} = & (0) \\ = & (0.0) \\ = & (0.0) \\ y) &= & (0.1) \\ = & 2 (\\ \end{array} $.02600 Sq.m.) .02960 Sq.m.) 691 + 0.400 + 1.3 7m) (2.02m) 3.6 /13)	x 2 x 2. x (16.20 367) x 12.5% (24 KN/m ³	7 x 77 m) x 77	/ 27.00 m / 27.00 m	= 0.400 = 1.367 = 0.307 = 8.242 = 0.554	KN/m KN/m KN/m KN/m
• Wearin	g course	= (0.0	05m) (2.02m)	(22 KN/m ³)		= 2.222	KN/m
		Total	Uniform Load	of Girder, w			= 13.784	KN/m
		Total	Uniform Dead	Load of Gi	rder, w _{DL}	Circle	= 11.008	KN/m
		 lotal 	ı unitorm Superi	imposed De	ad Load of	GIrder, W _{SDL}	= 2.776	KN/M

	DEPAR	TMENT OF PL		AND HIGHWA	AYS	BRIDGE ID	:	PAGE :
	LOAD) RATIN	G CALC	ULATIC	ONS	BRIDGE NAME	SIG CONTI	NUOUS
								NOTES
2 LOAD DEN			t Midspan an	ID SUPPORT				
The carria	igeway wic	dth is 7.35m c	urb to curb. T	nus, the brid	ge can car	ry 2-lanes of traf	fic.	
The distrib	oution of wh	neel loads fo	r two traffic la	nes shall be	taken as S	/1.676		
N		-	1.15	2.02 (1 000		1 104	
• Nu	imper of liv	e load whee	= =	2.02 /	1.829		= 1.104	
• Im	pact facto	r, I = 1	5.24 / (27	.00 + 3	8.00)		= 0.234	
Conductina	a Structural	Analysis the	load deman	ds for the SIC	G Continuo	us should be obt	ained	
separately a	nd input the	e necessary	0					
				Δ+ N	Aidenan	۸+	Diar Support	-
	Desc	ription	F	At N 1	0.8 m	AL	27.0 m	-11
Dead load n	noments, K	N-m		5	46.52		-1016.85	
Dead load s Additional D	nears, KN ead load n	noments. KN	-m		-4.24 27.65		- 184.41 -51.45	-1
Additional D	ead load s	hears, KN			-0.21		-9.93	
MS18 max. p	ositive mor	ment, KN-m		1(060.52		0.00	
MS18 max. p	ositive She	ar force, KN		-2	33.28		0.00	-11
MS18 max. n	egative Sh	ear force, KN	I	-	84.40		-198.35	
B.3.1 Properti	es at Midsp	oan and Pier	Support					
B.3.1 Properti AT MIDSPAN	es at Midsp	oan and Pier	Support	Yb	Yt	Sect	Stop	-
B.3.1 Properti AT MIDSPAN	es at Midsp Total AREA (m2)	Web AREA (m2)	Support Iz (m4)	Yb (m)	Yt (m)	S _{BOT} (m ³)	S _{TOP} (m ³)	
B.3.1 Properti AT MIDSPAN For Dead Load	Total AREA (m2) 0.02960	Web AREA (m2) 0.00770	Support Iz (m4) 0.00390	Yb (m) 0.32621	Yt (m) 0.55679	S _{BOT} (m ³) 0.01197	S _{TOP} (m ³) 0.00701	
B.3.1 Properti AT MIDSPAN For Dead Load For Add. DL / Live Load	es at Midsp Total AREA (m2) 0.02960 0.06394	Web AREA (m2) 0.00770 0.00770	Support Iz (m4) 0.00390 0.01053	Yb (m) 0.32621 0.67092	Yt (m) 0.55679 0.21208	S _{BOT} (m ³) 0.01197 0.01570	S _{TOP} (m ³) 0.00701 0.04967	
B.3.1 Properti AT MIDSPAN For Dead Load For Add. DL / Live Load AT PIER SUPPO	Total AREA (m2) 0.02960 0.06394	Web AREA (m2) 0.00770 0.00770	Support Iz (m4) 0.00390 0.01053	Yb (m) 0.32621 0.67092	Yt (m) 0.55679 0.21208	S _{BOT} (m ³) 0.01197 0.01570	S _{TOP} (m ³) 0.00701 0.04967	
B.3.1 Properti AT MIDSPAN For Dead Load For Add. DL / Live Load AT PIER SUPPO	Total AREA (m2) 0.02960 0.06394 DRT Total AREA	Web AREA (m2) 0.00770 0.00770	Support Iz (m4) 0.00390 0.01053 Iz	Yb (m) 0.32621 0.67092 Yb	Yt (m) 0.55679 0.21208 Yt	S _{вот} (m ³) 0.01197 0.01570 S _{вот}	S _{TOP} (m ³) 0.00701 0.04967 S _{TOP}	
B.3.1 Properti AT MIDSPAN For Dead Load For Add. DL / Live Load AT PIER SUPPO	Total AREA (m2) 0.02960 0.06394 DRT Total AREA (m2)	Web AREA (m2) 0.00770 0.00770	Support Iz (m4) 0.00390 0.01053 Iz (m4)	Yb (m) 0.32621 0.67092 Yb (m)	Yt (m) 0.55679 0.21208 Yt (m)	S _{вот} (m ³) 0.01197 0.01570 S _{вот} (m ³)	S _{TOP} (m ³) 0.00701 0.04967 S _{TOP} (m ³)	
B.3.1 Properti AT MIDSPAN For Dead Load For Add. DL / Live Load AT PIER SUPPO	Total AREA (m2) 0.02960 0.06394 DRT Total AREA (m2) 0.06490	Web AREA (m2) 0.00770 0.00770 Web AREA (m2) 0.00770	Support Iz (m4) 0.00390 0.01053 Iz (m4) 0.00750	Yb (m) 0.32621 0.67092 Yb (m) 0.46700	Yt (m) 0.55679 0.21208 Yt (m) 0.46700	S _{ВОТ} (m ³) 0.01197 0.01570 S _{ВОТ} (m ³) 0.01607	S _{TOP} (m ³) 0.00701 0.04967 S _{TOP} (m ³) 0.01607	
B.3.1 Properti AT MIDSPAN For Dead Load For Add. DL / Live Load For Dead Load For Dead Load	Total AREA (m2) 0.02960 0.06394 DRT Total AREA (m2) 0.04490 0.07924	Web AREA (m2) 0.00770 0.00770 Web AREA (m2) 0.00770 0.00770 0.00770 0.00770 0.00770 0.00770 0.00770	Support Iz (m4) 0.00390 0.01053 Iz (m4) 0.00750 0.01352	Yb (m) 0.32621 0.67092 Yb (m) 0.46700 0.70623	Yt (m) 0.55679 0.21208 Yt (m) 0.46700 0.22777	S _{ВОТ} (m ³) 0.01197 0.01570 S _{ВОТ} (m ³) 0.01607 0.01914	S _{TOP} (m ³) 0.00701 0.04967 S _{TOP} (m ³) 0.01607 0.05934	
B.3.1 Properti AT MIDSPAN For Dead Load For Add. DL / Live Load AT PIER SUPPO For Dead Load For Add. DL / Live Load	Total AREA (m2) 0.02960 0.06394 DRT Total AREA (m2) 0.04490 0.07924	Web AREA (m2) 0.00770 0.00770 0.00770 0.00770 0.00770 0.00770 0.00770	Support Iz (m4) 0.00390 0.01053 Iz (m4) 0.00750 0.01352	Yb (m) 0.32621 0.67092 Yb (m) 0.46700 0.70623	Yt (m) 0.55679 0.21208 Yt (m) 0.46700 0.22777	S _{ВОТ} (m ³) 0.01197 0.01570 S _{ВОТ} (m ³) 0.01607 0.01914	S _{ТОР} (m ³) 0.00701 0.04967 (m ³) 0.01607 0.05934	
B.3.1 Properti AT MIDSPAN For Dead Load For Add. DL / Live Load For Dead Load For Add. DL / Live Load	Total AREA (m2) 0.02960 0.06394 DRT Total AREA (m2) 0.04490 0.07924	Web AREA (m2) 0.00770 0.00770 0.00770 0.00770 0.00770 0.00770 0.00770	Support Iz (m4) 0.00390 0.01053 Iz (m4) 0.00750 0.01352	Yb (m) 0.32621 0.67092 Yb (m) 0.46700 0.70623	Yt (m) 0.55679 0.21208 Yt (m) 0.46700 0.22777	S _{ВОТ} (m ³) 0.01197 0.01570 S _{ВОТ} (m ³) 0.01607 0.01914	STOP (m ³) 0.00701 0.04967 STOP (m ³) 0.01607 0.05934	
B.3.1 Properti AT MIDSPAN For Dead Load For Add. DL / Live Load AT PIER SUPPO For Dead Load For Add. DL / Live Load	Total AREA (m2) 0.02960 0.06394 DRT Total AREA (m2) 0.04490 0.07924	Web AREA (m2) 0.00770 0.00770 0.00770 0.00770 0.00770 0.00770	Support z (m4) 0.00390 0.01053 z (m4) 0.00750 0.01352	Yb (m) 0.32621 0.67092 Yb (m) 0.46700 0.70623	Yt (m) 0.55679 0.21208 Yt (m) 0.46700 0.22777	S _{ВОТ} (m ³) 0.01197 0.01570 S _{ВОТ} (m ³) 0.01607 0.01914	S _{TOP} (m ³) 0.00701 0.04967 (m ³) 0.01607 0.05934	

Y		DEPARTMENT OF PUBLIC WO	ORKS AND HIGHWA	AYS	BRIDGE	ID	:	PAGE :				
		LOAD RATING C	ALCULATIC	ONS	BRIDGE	NAME	: SIG CONTINU	OUS				
R 4								NOTES				
D .4	The rea											
	demands and the appropriate section properties at given section locations under											
	consic	leration. The stress results are sl	nown in the table	e below.								
	Estima	ted Stress Demands at Girder	Sections	In N	1pa							
		LOADING	At Midspan	At Pier Su	pport m							
	Dead Lo	bad Moment, Top	77.95	-63.2	8							
	Dead Lo	bad Moment, Bottom	-45.67	63.2	8							
	SDL Mor	ment, Top	0.56	-0.8	7							
	SDL Mor	nent, Bottom	-1.76	2.69	2							
	Live Loa	d Moment, rop	-67 55	-10.1	3 1							
	Dead Lo	ad Shear	0.55	23.9	6							
	SDL She	ar	0.03	1.29)							
	Live Loa	d Shear	10.82	25.7	8							
	-ve : ter	nsion										
	+ve : c	ompression										
C. L	OAD	RATING BY ALLOWABI	E STRESS ME	THOD	(ASM	l)						
C.1	ALLOW	ABLE STRESS CALCULATIONS										
	C.1.1	Allowable Stresses for Conc	crete and Steel									
	Concr	ete : f'c = fc / 0.40 = (fc = 8.27 Mpa)	8.3 / 0.4	= 20 (Af	0.7 Mp ter 195	9, f'c=	20.7 Mpa)					
	Steel	: fs = 137.9 Mpa	=> fy =	248.2 (after 196	Мра 3)							
	C.1.2	Compression and Tensile St	resses									
	Note t	hat the section is fully braced	at this location.									
	i. Allo	wable compressive stress at ir	nventory	0.55 fy	/ =	137.9	Мра					
	ii. Allo	wable comp./tensile stress at	operating	0.75 fy	/ =	186.2	Мра					
	iii. Allo	owable tensile stress at invento	ry	0.55 fy	/ =	137.9	Мра					
			5	<u>,</u>			,					
	C.1.3	Allowable Shear Stress										
	i. Allo	wable shear stress at inventor	у	fy/3	=	82.7	Мра					
	ii. Allo	owable shear stress at operatin	g	(0.45 f	y) =	110.3	Мра					
RATER) BY ·	DATE ·	Сн	ECKED BY			DATE					
			27	4								

	DEPARTMENT	OF PUBLIC WORKS AND HIGHWA	AYS	BRIDGE ID :	PAGI	Ξ:
	load ra	TING CALCULATIO	ONS	BRIDGE NAME :	SIG CONTINUOUS	
		IIONS			-	NOTES
The rating	factor (RF) in 1	the Allowable Stress Method	(ASD) is gi	ven by:		
RF =	R - A ₁ D	Where : $A_1 = 1.0$				
_	$A_2 L (1 + I)$	A ₂ = 1.0				
and sul	ostituting the v	values will give us the results	as present	ed in the table		
below:	stituting the t	and s will give us the results.				
	RATING FAC	CTOR CALCULATIONS USING	g allow	ABLE STRESS MET	HOD	
Section	Description	INVENTORY RATING		OPERATING	RATING	
	Stress at top Fiber	137.9 - (77.95+0.56)	2.78	5.2 - (77.95+0.56) 21.35	= 5.04	
	TIDOI	21.00		21.00		
At	Stress at Bot	-137.9 - (-45.67-1.76)	-18	6.2 - (-45.67-1.76)	= 2.05	
iviiaspar	Fiber	-67.55		-67.55		
	Shear	82.7 - (0.55+0.03)	7 59 110	0.3 - (0.55+0.03)	= 10.14	
	Strong at top	10.82	10	10.82		
	Fiber	-16.13 =	4.57	-16.13	= 7.57	
At Support	Stress at Bot	137.9 - (63.28+2.69) =	1.44	5.2 - (63.28+2.69) 50.01	= 2.40	
	TIBEI	30.01		30.01		
	Shear	82.7 - (23.96+1.29)	2.23	0.3 - (23.96+1.29)	= 3.30	
		25.78		25.78		
		LOAD RATING CAL		IS stric Tons		
Section	Description	INVENTORY RATING (Tons)	W=33 MC	OPERATING RAT	TING (Tons)	
At	Moment	1.34 x 33 = 44 .2	2	2.05 x 33	= 67.8	
Midspar	1 Shear Moment	$7.59 \times 33 = 250.$ 1 44 x 33 = 47	.4 5	10.14 x 33 2.40 x 33	= 334.6	
Support	Shear	$2.23 \times 33 = 73.5$	5	3.30 x 33	= 108.9	
thus Po	actors at sectio sting Loads is i	ns At Support, Sect. B, and At M not necessary.	lospan nav	e values over man	Τ,	
	DA	ATE · CH			DATE ·	

LOAD RATING CALCULATIONS BRIDGE NAME : SIG CONTINUOUS
NOTE
INTENTIONALLY BLANK

EXAMPLE 5

Reinforced Concrete Deck Slab

RC DECK SLAB

A. SLAB LAYOUT

BACK TO MENU

B. DEMAND FORCES

BO. INPUT					
	Weight of barrier rail Wbr =	4.2			
Assumption	Concrete Unit Weight Wu =	24.0			
	Asphalt Unit Weight Wa =	22.0			
	CONTINUOUS SALB				
	Slab thickness ts (m)	0.18			
	Asphalt overlay thickness tas (m	0.05			
	Slab span (Ls) (m)	1.90			
FOR	CANTILEVER SALB				
DEAD	Slab thickness ts (m)	0.15			
LOAD	Slab thickness of hunch ts' (m)	0.05			
	Asphalt overlay thickness tas (m	0.05			
	Slab span (Ls) (m)	1.0			
	Width of Asphalt (Las) (m)	0.6			
	Width of Curb (Lcu) (m)	0.4			
	LIVE LOAD				
FOR	Live Load (LL) (KN)	72.0			
LIVE	Impact (I)	0.3			
LOAD	Wheel load position from Curb(Lcu)(m)	0.3			
	Distributed over a length (E) (m)	1.383			

B1. DEAD LOAD CALCULATIONS			
Managet due to degred logid (K) in (m)	Continuous Slab	1.96	
	Cantilever Slab	5.56	

B2. LIVE LOAD CALCULATIONS				
Moment due to Live load (KNLm(m)	Continuous Slab	19.30		
	Cantilever Slab	20.30		

C. LOAD RATING BY LOAD FACTOR METHOD (LFM)

C1. CAPACITY CALCULATIONS

C1.1. INPUT					
	Consiste	Allowable Stress fc		8.30	
Material Properties	Conciere	Strength	f'c	20.7	
(Mpa)	Pobar	Allowable Stress	fs	137.9	
	Kebui	Strength	fy	275.8	
Rehar area per ma	ator strip	Diameter (mm)		16	
As (mm^2)		Spacing (mm)		125	
As (mm)		Rebar area As (mm2)	1608.50	
	Nominal Factor			0.9	
Ultimate capacity	due to Concrete Section Loss		tion Loss	1.0	
factor (Uf)	factor	due to Rebar Section	1.0		
	Applicable reduction factor			0.9	
Slab thickness (mm)		Continuous slab (tscc	n)	180	
		Cantilever slab (tscar	200		
Cover (mm) (c)				25	
Rebar diameter (mm) (Φ)				16	
Concrete rectangular stress block (a) (mm)				25.21	
		Continuous slab (dcon) (mm)		147.0	
		Cantilever slab (dcar	167.0		

C1.2. CAPACITY CALCULATIONS					
The Moment Ultimate Capacity	Continuous slab (Mucon) (KN-m,	53.70			
	Cantilever slab (Mucan) (KN-m/i	61.69			

C2. LOAD RATING CALCULATIONS

C2.1. INPUT				
Load factor for dead load	1.3			
Load factor for live load in Inventory Rating	2.17			
Load factor for live load in Operating Rating	1.3			
Moment Ultimate Capacity at Continuous Slab	53.70			
Dead Load Moment at Continuous Slab	1.96			
Live Load Moment at Continuous Slab	19.30			
Moment Ultimate Capacity at Cantilever Slab (KN-m/m)	61.69			
Dead Load Moment at Cantilever Slab	5.56			
Live Load Moment at Cantilever Slab	20.30			
Rating Live Load	33.0			

C2.2. CALC	Rating Factor	Load Rating (tons)		
Dation Fricker	Continuous Slab	Inventory Rating	1.22	40.32
Rating Factor	COLITINOODS SIDD	Operating Rating	2.04	67.30
Load Rating	Captilover Slab	Inventory Rating	1.24	40.79
	Cullilevel 310b	Operating Rating	2.06	68.09

Depend on the minimum value of Rating Factor > 1 or <1 , instruction in the below cell is automatically shown

Return to LAYOUT

Click following the above instruction

Return to LAYOUT

Load Posting

D. LOAD POSTING BY LOAD FACTOR METHOD

D1. DEMAND FORCES FOR LOAD POSTING VEHICLES								
Description	Posting	Vehicles	Demand					
Description		Туре	Wheel Load	Forces				
	Continuous Slab	Type 1-1	66.8	17.90				
		Type 1-2	73.9	19.81				
Moment due to Live load (KN-m/m)		Туре 12-2	65.9	17.66				
		Type 1-1	66.8	18.84				
	Cantilever Slab	Type 1-2	73.9	20.84				
		Туре 12-2	65.9	18.58				

D2. POSTING RATING FACTOR CALCULATIONS

D2.1. POSTING RATING FACTOR CALCULATIONS						
Load factor for dead load						
Load factor for live lo	oad in Inventory Rating		2.17			
Load factor for live lo	oad in Operating Rating		1.3			
	Moment Ultimate Capacity at Continuous Slo	ab	53.70			
At Continuous Slab	Dead Load Moment at Continuous Slab	1.96				
		Type 1-1	17.90			
	Live Load Moment at Continuous Slab	Type 1-2	19.81			
		Type 12-2	17.66			
	Moment Ultimate Capacity at Cantilever Slab (KN-m/m)					
۸+	Dead Load Moment at Cantilever Slab					
Cantilever Slab		Type 1-1	18.84			
Commercer sido	Live Load Moment at Cantilever Slab	Type 1-2	20.84			
		Type 12-2	18.58			
Rating Live Load			33.0			

D2	Rating Factor	Load Rating (tons)			
		Type 11	Inventory Rating	1.32	43.45
		туре т-т	Operating Rating	2.20	72.54
	Continuous	Tupo 1.0	Inventory Rating	1.19	39.28
	Slab	Type I-z	Operating Rating	1.99	65.57
		Туре 12-2 -	Inventory Rating	1.33	44.05
Rating Factor			Operating Rating	2.23	73.53
Load Rating	Cantilever	Type 1-1	Inventory Rating	1.25	41.30
Loud Kulling			Operating Rating	2.09	68.94
		T	Inventory Rating	1.13	37.33
	Slab	Type 1-2	Operating Rating	1.89	62.31
		Tupo 12.2	Inventory Rating	1.27	41.86
	Iyp	Type 12-2	Operating Rating	2.12	69.88

E. SUMMARY OF LOAD POSTING

		Inve RF	ntory I R	Oper	ating	Posting (Metric Tons)
(1) CONTINUOUS SLAB						
M\$18	33.0	1.22	40.3	2.04	67.3	33
Type 1-1	17.0	1.32	22.4	2.20	37.4	17
Type 1-2	27.0	1.19	32.1	1.99	53.6	27
Туре 12-2	38.0	1.33	50.7	2.23	84.7	38
(2) CANTIL	EVER SLAB					
MS18	33.0	1.24	40.8	2.06	68.1	33
Type 1-1	17.0	1.25	21.3	2.09	35.5	17
Type 1-2	27.0	1.13	30.5	1.89	51.0	27
Туре 12-2	38.0	1.27	48.2	2.12	80.5	38
				LOAI	D POSTING	
					M\$18	33T
					Type 1-1	17T

BACK TO LAYOUT

Type 1-2

Type 12-2

27T

38T

	DEPARTMEN	IT OF PUBLIC WORKS AND H	IIGHWAYS	BRIDGE	ID :		PAGE :	
	LOAD R	ATING CALCUL	ATIONS	BRIDGE I	NAME :	RC DECK SLA	В	
							NOTES	
Using Oper	the MS18 ra ating Levels	ting live load, the are calculated b	e load rating elow.	g for Ir	nventory	/ and		
	LO (Rating	AD RATING CALC Live Load = MS18	ULATIONS (W = 33 Me	(LFM) etric To	ons)			
Location	Description	Inventory Rating (To	ns)	Operati	ing Rating ((Tons)		
Section 1	Cantilever Slab	1.24 × 33 =	40.79	2.06 x	33 =	- 67.30	This Manual Eq. 3.1-5	
Section 2 or 3	Continuous Slab	1.22 x 33 =	40.32	2.04 x	33 =	■ 68.09	This Manual Eq. 3.1-5	
D. Der Postin Calcu	D. Demand Forces for Load Posting Live Vehicles Posting Live Vehicle's Forces is calculated as same as the section B2. Live- Load Calculations based on the Wheel Load of Posting live Load as follows.							
D1. D	DEMAND FORC	ES FOR LOAD POSTIN	NG VEHICLES					
Desci	ription				Posting	g Vehicles Wheel Logo	Demand	
Mom	ent due to live l	ad (KN m/m)	Continuou	s Slab	Type 1-1 Type 1-2 Type 12-2	66.8 73.9 65.9	17.90 19.81 17.66	
			Cantileve	- Slab	Type 1-1 Type 1-2 Type 12-2	66.8 73.9 65.9	18.84 20.84 18.58	
Postin	na Ratina Factor i	s also calculated as sam	ne as the sectio	n C as fa	ollows			
	D2	1. POSTING RATING			TIONS		ר'	
Load	d factor for dead	load				1.3	-1	
Load	d factor for live lo	ad in Inventory Rating				2.17		
Load	d factor for live lo	oad in Operating Rating				1.3		
		Moment Ultimate Car	pacity at Conti	nuous SI	ab	53.70		
		Dead Load Moment c	t Continuous S	lab		1.96		
	At				Type 1-1	17.90		
Co	ontinuous Slab	Live Load Moment at	Continuous Sla	b	Type 1-2	19.81		
					Type 12-2	17.66		
		Moment Ultimate Car	pacity at Canti	lever Slo	100×12^{-1}	1) 61.69		
		Dead Load Moment of	t Cantilever Sk			5.54		
С	At antilever Slab	Live Load Moment at	Cantilever Slak		Type 1-1 Type 1-2	18.84 20.84		
Rati	ng Live Load				Type 12-2	33.0		
		N 4 7 5						
RATED BY :	[DAIE :	CHECKED BY	:		DATE :		

D2.2. RATING FACTOR AND LOAD RATING CALCULATIONS Rating Factor Load Rating (tons) Rating factor and Load Rating Type 1-1 Inventory Rating Operating Rating 1.32 43.45 Rating factor and Load Rating Type 1-2 Operating Rating 2.20 72.54 Type 1-2 Operating Rating 1.99 65.57 Type 1-2 Operating Rating 2.23 73.53 Contilever Slab Type 1-1 Inventory Rating 1.25 41.30 Operating Rating 2.09 68.94 0 0 0 Inventory Rating 1.25 41.30 0 0 0 0 Inventory Rating 1.89 62.31 1 1.99 62.31 0 Inventory Rating 1.27 41.86 0 <th>D2.2. RATING FACTOR AND LOAD RATING CALCULATIONS Rating Factor Load Rating (tons) Import 1 Inventory Rating 1.32 43.45 Operating Rating 2.20 72.54 Import 1 Inventory Rating 1.19 39.28 Operating Rating 1.19 39.28 Operating Rating 1.99 65.57 Type 1-2 Inventory Rating 1.33 44.05 Operating Rating 2.23 73.53 Inventory Rating 1.25 41.30 Operating Rating 2.09 68.94 Load Rating Type 1-1 Inventory Rating 1.25 41.30 Operating Rating 2.09 68.94 Inventory Rating 1.25 41.30 Operating Rating 1.09 62.31 Inventory Rating 1.27 41.86 Operating Rating 1.27 41.86 Operating Rating 2.12 69.88 .coad Posting is summarized as follows. E Summarized as follows. E Inventory Operating Rating 2.12 69.88 .coat Posting is 33.0 I.</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>NC</th>	D2.2. RATING FACTOR AND LOAD RATING CALCULATIONS Rating Factor Load Rating (tons) Import 1 Inventory Rating 1.32 43.45 Operating Rating 2.20 72.54 Import 1 Inventory Rating 1.19 39.28 Operating Rating 1.19 39.28 Operating Rating 1.99 65.57 Type 1-2 Inventory Rating 1.33 44.05 Operating Rating 2.23 73.53 Inventory Rating 1.25 41.30 Operating Rating 2.09 68.94 Load Rating Type 1-1 Inventory Rating 1.25 41.30 Operating Rating 2.09 68.94 Inventory Rating 1.25 41.30 Operating Rating 1.09 62.31 Inventory Rating 1.27 41.86 Operating Rating 1.27 41.86 Operating Rating 2.12 69.88 .coad Posting is summarized as follows. E Summarized as follows. E Inventory Operating Rating 2.12 69.88 .coat Posting is 33.0 I.							NC	
D2.2. RATING FACTOR AND LOAD RATING CALCULATIONS Rating Factor Load Rating (tons) Rating Factor and Load Rating Type 1-1 Inventory Rating 1.32 43.45 Rating Factor and Load Rating Type 1-2 Inventory Rating 1.19 39.28 Continuous Slab Type 1-2 Operating Rating 1.29 43.45 Type 1-2 Inventory Rating 1.33 44.05 Decreting Rating 2.29 72.54 Type 1-2 Operating Rating 1.25 41.30 Operating Rating 2.23 73.53 1nventory Rating 1.13 37.33 Type 1-2 Operating Rating 1.25 41.30 0 68.94 Type 1-2 Operating Rating 1.27 41.86 0 69.88 Submontained as follows. SUMMARY OF LOAD POSTING MS18 33.0 1.22 40.3 2.04 67.3 33 Type 1-1 17.0 1.32 22.4 2.20 37.4 17 Type 1-2	D2.2. RATING FACTOR AND LOAD RATING CALCULATIONSRating Factor (tons)Load Rating Load RatingLoad RatingType 1-1Inventory Rating Operating Rating Departing Rating1.3243.45Operating Rating Operating Rating2.2072.54Type 1-2Inventory Rating Operating Rating1.1939.28Operating Rating Operating Rating1.9965.57Type 1-2Inventory Rating Operating Rating Operating Rating Operating Rating1.3344.05Operating Rating Operating Rating Operating Rating Operating Rating Operating Rating Operating Rating1.2541.30Operating Rating Operating Rating Operating Rating Operating Rating Operating Rating Operating Rating1.2741.86Operating Rating Operating Rating Operating Rating Operating Rating1.2741.86Operating Rating Operating Rating Operating Rating2.1269.88Inventory Rating Operating Rating1.2741.86Operating Rating Operating Rating2.1269.88Inventory Coperating Rating Operating Rating2.1269.88InventoryOperating Rating Operating Rating2.1269.88InventoryOperating Rating Operating Rating2.1269.88InventoryOperating Rating Operating Rating2.1269.88In								
LOAD RATING CALCULATIONS Factor (fons) Rating Factor and Load Rating Type 1-1 Inventory Rating 1.32 43.45 Rating Factor and Load Rating Type 1-2 Inventory Rating 1.19 39.28 Type 1-2 Operating Rating 1.20 72.54 Inventory Rating 1.33 44.05 Operating Rating 2.20 72.54 Inventory Rating 1.33 44.05 Operating Rating 2.23 73.53 Inventory Rating 1.25 41.30 Operating Rating 2.09 68.94 Inventory Rating 1.13 37.33 Inventory Rating 1.13 37.33 Operating Rating 1.27 41.86 Operating Rating 1.27 41.86 Operating Rating 1.27 40.3 Ad Posting is summarized as follows. Summarized as follows. Summarized as follows. SUMMARY OF LOAD POSTING MS18 33.0 1.22 40.3 2.04 67.3 33 fype 1	LOAD RATING CALCULATIONS Factor (tons) Factor (tons) (tons) (tons) Image: Stab Type 1-1 Inventory Rating 1.32 43.45 Operating Rating 2.20 72.54 Operating Rating 1.19 39.28 Operating Rating 1.19 39.28 Operating Rating 1.33 44.05 Operating Rating 2.23 73.53 Inventory Rating 1.33 44.05 Operating Rating 2.23 73.53 Inventory Rating 1.25 41.30 Operating Rating 2.09 68.94 Inventory Rating 1.13 37.33 Type 1-2 Operating Rating 1.13 37.33 Operating Rating 1.27 41.86 0perating Rating 2.12 69.88 oad Posting is summarized as follows. Inventory Rating 1.27 41.86 Operating Rating 2.12 69.88 0perating Rating 2.12 69.88 oad Posting is summarized as follow	D2.2. RATING	G FACTOR A	ND		Rating	Load Rating		
Rating Factor and Load Rating Continuous Slab Type 1-1 Type 1-2 Inventory Rating (Inventory Rating) 1.32 2.0 43.45 72.54 Type 1-2 and Load Rating Type 1-2 Cantilever Slab Inventory Rating Type 1-2 1.19 39.28 (Operating Rating) 1.99 65.57 Type 12-2 Inventory Rating 1.33 44.05 0 Operating Rating 2.23 73.53 Inventory Rating 1.33 34.05 0 Operating Rating 2.09 68.94 Type 1-1 Inventory Rating 1.13 37.33 0 Operating Rating 1.89 62.31 Type 1-2 Inventory Rating 1.22 40.3 2.04 69.88 Motion Rating 1.22 40.3 2.04 67.3 33 Operating Rating 2.12 69.88 MS18 33.0 1.22 40.3 2.04 67.3 33 Operating Rating 2.04 67.3 33 MS18 33.0 1.22 40.3 2.04 67.3 33	Rating Factor and Load Rating Continuous Slab Type 1-1 Type 1-2 Inventory Rating Operating Rating 1.32 2.20 43.45 72.54 Rating Factor and Load Rating Type 1-2 Inventory Rating 1.19 39.28 Rating Factor and Load Rating Type 12-2 Inventory Rating 1.33 44.05 Type 12-2 Inventory Rating 1.33 44.05 Cantilever Slab Type 1-1 Inventory Rating 1.25 41.30 Operating Rating 2.09 68.94 1.37.33 00 Type 1-2 Inventory Rating 1.13 37.33 00 Type 1-2 Inventory Rating 1.27 41.86 Operating Rating 2.12 69.88 boad Posting is summarized as follows. Inventory Rating 2.12 69.88 cond Posting is summarized as follows. Inventory Operating Rating 2.12 69.88 cond Posting is summarized as follows. Inventory Operating Rating 2.12 69.88 cond Posting Rs 33.0 1.22 40.3 2.04 67.3	LOAD	RATING CA	LCULATION	15	Factor	(tons)		
Rating Factor and Load Rating Continuous Slab Type 1-2 Type 12-2 Operating Rating (Operating Rating Deperating Rating 2.23 73.53 Mathematical Load Rating Type 1-2 Slab Type 1-2 Type 1-2 Inventory Rating (Operating Rating 2.02 73.53 Mathematical Contilever Slab Type 1-2 Type 1-2 Inventory Rating (Operating Rating 2.09 68.94 Mathematical Type 1-2 Type 1-2 Type 12-2 Inventory Rating (Operating Rating 2.12 1.3 Mathematical Operating Rating 1.89 62.31 Mathematical Operating Rating 1.22 41.86 Operating Rating 2.12 69.88 Mathematical Operating	Operating Rding2.2072.34Inventory Rating1.1939.28Operating Rating1.9965.57Type 1-2Operating Rating1.3344.05Operating Rating2.2373.53Inventory Rating1.3344.05Operating Rating2.2373.53Inventory Rating1.2541.30Operating Rating2.0968.94Type 1-1Operating Rating2.0968.94Type 1-2Inventory Rating1.1337.33Operating Rating1.1337.33Operating Rating1.1337.33Operating Rating1.1337.33Operating Rating1.1241.86Operating Rating1.2741.86Operating Rating1.2741.86Operating Rating2.1269.88Inventory Potenting Rating2.1269.88InventoryOperating Rating2.1269.88InventoryOperating Rating2.1269.88InventoryOperating Rating2.1269.88InventoryOperating Rating2.1269.88InventoryOperating Rating2.1269.88InventoryOperating Rating1.2741.86(I) CONTINUOUS SLAB		Type 1-1		Rating	1.32	43.45		
Rating Factor and Load Rating Type 1-2 Type 12-2 Operating Rating Inventory Rating 1.99 65.57 (a) Cantilever Slab Type 1-2 Inventory Rating Deprating Rating 2.23 73.53 (a) Type 1-1 Type 1-2 Inventory Rating 1.25 41.30 (b) Cantilever Slab Type 1-2 Inventory Rating 1.25 41.30 (b) Operating Rating 2.09 68.94 (a) Inventory Rating 1.27 41.86 (b) Operating Rating 2.12 69.88 62.31 (a) Inventory Rating 2.12 69.88 ad Posting is summarized as follows. Summarized as follows. Inventory Operating Rating 2.12 69.88 MS18 33.0 1.22 40.3 2.04 67.3 33 MS18 33.0 1.22 40.3 2.04 67.3 33 MS18 33.0 1.24 40.8 2.06 68.1 33 MS18 33.0 </td <td>Rating Factor and Load RatingType 1-2Operating Rating Operating Rating1.965.57Rating Factor and Load RatingInventory Rating1.3344.05Cantilever SlabType 12-2Inventory Rating2.2373.53Inventory Rating1.2541.30Operating Rating2.0968.94Type 1-1Operating Rating2.0968.94Inventory Rating1.1337.33Operating Rating1.8962.31Inventory Rating1.2741.86Operating Rating2.1269.88Doad Posting is summarized as follows.Inventory Rating2.12EInventoryOperating Rating2.12InventoryOperating Rating2.1269.88Doad Posting is summarized as follows.InventoryOperating RatingPostin (Metric TInventoryOperatingPostin (Metric TInventoryOperatingPostin (Metric TInventoryOperatingPostin (Metric TInventoryOperatingPostin (Metric TInventoryOperatingPostin (Metric TInventoryOperatingPostin (Metric TInventoryOperatingPostin (Metric TInventory0.32.0467.3Inventory0.33.0Inventory0.33.0Inventory0.33.0Inventory0.33.0Inventory0.33.0Inventory<td>Continuou</td><td></td><td>Inventorv</td><td>Ratina</td><td>2.20</td><td>39.28</td><td></td></td>	Rating Factor and Load RatingType 1-2Operating Rating Operating Rating1.965.57Rating Factor and Load RatingInventory Rating1.3344.05Cantilever SlabType 12-2Inventory Rating2.2373.53Inventory Rating1.2541.30Operating Rating2.0968.94Type 1-1Operating Rating2.0968.94Inventory Rating1.1337.33Operating Rating1.8962.31Inventory Rating1.2741.86Operating Rating2.1269.88Doad Posting is summarized as follows.Inventory Rating2.12EInventoryOperating Rating2.12InventoryOperating Rating2.1269.88Doad Posting is summarized as follows.InventoryOperating RatingPostin (Metric TInventoryOperatingPostin (Metric TInventoryOperatingPostin (Metric TInventoryOperatingPostin (Metric TInventoryOperatingPostin (Metric TInventoryOperatingPostin (Metric TInventoryOperatingPostin (Metric TInventoryOperatingPostin (Metric TInventory0.32.0467.3Inventory0.33.0Inventory0.33.0Inventory0.33.0Inventory0.33.0Inventory0.33.0Inventory <td>Continuou</td> <td></td> <td>Inventorv</td> <td>Ratina</td> <td>2.20</td> <td>39.28</td> <td></td>	Continuou		Inventorv	Ratina	2.20	39.28		
Rating Factor and Load Rating Type 12-2 Type 1-2 Inventory Rating Operating Rating 1.33 44.05 (Decreting Rating) Type 1-1 Type 1-2 Inventory Rating 2.23 73.53 Inventory Rating 2.09 68.94 41.30 Operating Rating 2.09 68.94 Inventory Rating 1.13 37.33 Operating Rating 1.25 41.86 Operating Rating 1.27 41.86 Operating Rating 2.12 69.88	Rating Factor and Load Rating Type 12-2 Inventory Rating 1.33 44.05 Qperating Rating 2.23 73.53 1.30 44.05 0 Load Rating Type 1-1 Inventory Rating 1.25 41.30 0 Cantilever Slab Type 1-1 Inventory Rating 1.13 37.33 37.33 Operating Rating 2.09 68.94 1.13 37.33 0 Type 1-2 Inventory Rating 1.13 37.33 0 0 0 1.13 37.33 0 0 0 1.13 37.33 0 0 0 0 0 1.13 37.33 0 <td>Slab</td> <td>Type 1-2</td> <td>Operating</td> <td>g Rating</td> <td>1.99</td> <td>65.57</td> <td></td>	Slab	Type 1-2	Operating	g Rating	1.99	65.57		
and Load Rating Type I-1 Operating Rating Inventory Rating 2.23 73.53 Type I-1 Inventory Rating 1.25 41.30 Operating Rating 2.09 68.94 Type I-2 Inventory Rating 1.25 41.30 Operating Rating 1.89 62.31 Type I-2 Inventory Rating 1.27 41.86 Operating Rating 2.12 69.88	and Load Rating Image: Continent of the second	actor	Type 12-2		Rating	1.33	44.05		
Load Rating Type 1-1 Type 1-2 Operating Rating 2.09 68.94 Type 1-2 Type 1-2 Inventory Rating 1.13 37.33 Operating Rating 1.20 68.94 Type 1-2 Inventory Rating 1.27 41.86 Operating Rating 1.27 41.86 Operating Rating 2.12 69.88	Load Rating Type 1-1 Type 1-1 Operating Rating 2.09 68.94 Type 1-2 Type 1-2 Inventory Rating 1.13 37.33 Operating Rating 1.89 62.31 Type 12-2 Inventory Rating 1.27 41.86 Operating Rating 2.12 69.88 bad Posting is summarized as follows. Inventory Rating 2.12 69.88 bad Posting is summarized as follows. Inventory Operating Rating 2.12 69.88 bad Posting is summarized as follows. Inventory Operating Posting Posting RF LR RF LR (Metric T (Metric T 71 1.32 20.4 67.3 33 Type 1-1 17.0 1.32 22.4 2.20 37.4 17	k		Inventory	Rating Ratina	2.23	/3.53		
Cantilever Slab Type 1-2 Inventory Rating Operating Rating 1.13 37.33 0perating Rating Type 1-2 Inventory Rating 1.89 62.31 Inventory Rating 1.27 41.86 Operating Rating 2.12 69.88 ad Posting is summarized as follows. SUMMARY OF LOAD POSTING RF LR RF LR Posting (Metric Tons) Operating Posting (Metric Tons) Posting (Metric Tons) 33 NS18 33.0 1.22 40.3 2.04 67.3 33 MS18 33.0 1.22 40.3 2.04 67.3 33 Type 1-2 27.0 1.19 32.1 1.99 53.6 27 MS18 33.0 1.24 40.8 2.06 68.1 33 Type 1-2 27.0 1.13 30.5 1.89 51.0 27 MS18 33.0 1.24 40.8 2.06 68.1 33 Type 1-2 27.0	Cantilever Slab Type 1-2 Inventory Rating Operating Rating 1.13 37.33 Operating Rating 1.89 62.31 Type 12-2 Inventory Rating 1.27 41.86 Operating Rating 2.12 69.88 bad Posting is summarized as follows. Inventory Rating 2.12 69.88 bad Posting is summarized as follows. Inventory Operating Rating 2.12 69.88 Inventory Operating Rating 2.12 69.88 69.88 Inventory Operating Rating 2.12 69.88 Inventory Operating Rating 0.12 0.12 0.12 MS18 33.0 1.22 40.3 2.04 67.3 33 Type 1-1 17.0 1.32 22.4 2.20	ating	Type 1-1	Operating	g Rating	2.09	68.94		
Slab 1,12 Operating Rating Type 12-2 1.89 62.31 Type 12-2 Inventory Rating Operating Rating 1.27 41.86 Operating Rating 2.12 69.88 ad Posting is summarized as follows. SUMMARY OF LOAD POSTING Inventory Operating Posting (Metric Tons) Operating Ref Posting (Metric Tons) Operating Postinkg MS18 <th colspane"2"<="" td=""><td>Slab Weat 2 Operating Rating 1.89 62.31 Type 12-2 Inventory Rating 1.27 41.86 Operating Rating 2.12 69.88 Decision of the system 0 0 0 Decision of the system 0 0 0 0 Decision of the system 0 0 0 0 0 Decision of the system 0</td><td>Cantileve</td><td>er Type 1-2</td><td>Inventory</td><td>Rating</td><td>1.13</td><td>37.33</td><td></td></th>	<td>Slab Weat 2 Operating Rating 1.89 62.31 Type 12-2 Inventory Rating 1.27 41.86 Operating Rating 2.12 69.88 Decision of the system 0 0 0 Decision of the system 0 0 0 0 Decision of the system 0 0 0 0 0 Decision of the system 0</td> <td>Cantileve</td> <td>er Type 1-2</td> <td>Inventory</td> <td>Rating</td> <td>1.13</td> <td>37.33</td> <td></td>	Slab Weat 2 Operating Rating 1.89 62.31 Type 12-2 Inventory Rating 1.27 41.86 Operating Rating 2.12 69.88 Decision of the system 0 0 0 Decision of the system 0 0 0 0 Decision of the system 0 0 0 0 0 Decision of the system 0	Cantileve	er Type 1-2	Inventory	Rating	1.13	37.33	
Type 12-2 Thermory Kailing 1.27 41.80 Operating Rating 2.12 69.88 ad Posting is summarized as follows. SUMMARY OF LOAD POSTING Inventory Operating Posting RF LR RF LR (Metric Tons) Operating Add Posting Posting Posting NS18 33.0 1.22 40.3 2.04 67.3 33 Type 1-1 17.0 1.32 22.4 2.20 37.4 17 Type 1-2 27.0 1.19 32.1 1.99 53.6 27 Ype 1-2 38.0 1.33 50.7 2.23 84.7 38 CANTILEVER SLAB MS18 33.0 1.24 40.8 2.06 68.1 33 Type 1-1 17.0 1.25 21.3 2.09 35.5 17 Type 1-2 27.0 1.13 30.5 1.89 51.0 27 Ype 1-2 27.0 1.13 30.5	Type 12-2 Inventory Rating 1.27 41.36 Operating Rating 2.12 69.88 ad Posting is summarized as follows. S. SUMMARY OF LOAD POSTING Inventory Operating Postin RF LR RF LR MS18 33.0 1.22 40.3 2.04 67.3 33 Type 1-1 17.0 1.32 22.4 2.20 37.4 17	Slab	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Operating	Rating	1.89	62.31		
Inventory Operating Posting NSUMMARY OF LOAD POSTING Inventory Operating Posting RF LR RF LR (Metric Tons) OCONTINUOUS SLAB Inventory 00 00 00 MS18 33.0 1.22 40.3 2.04 67.3 33 Type 1-1 17.0 1.32 22.4 2.20 37.4 17 Type 1-2 27.0 1.19 32.1 1.99 53.6 27 ype 12-2 38.0 1.33 50.7 2.23 84.7 38 CANTILEVER SLAB MS18 33.0 1.24 40.8 2.06 68.1 33 Type 1-1 17.0 1.25 21.3 2.09 35.5 17 Type 1-2 27.0 1.13 30.5 1.89 51.0 27 ype 12-2 38.0 1.27 48.2 2.12 80.5 38 LOAD POSTING MS18 331 Type 1-1	Inventory Operating Posting Inventory Operating Posting RF LR RF LR I) CONTINUOUS SLAB MS18 33.0 1.22 40.3 2.04 67.3 33 Type 1-1 17.0 1.32 22.4 2.20 37.4 17		Type 12-2		Ratina	2.12	41.86		
Mark Posting is summarized as follows. SUMMARY OF LOAD POSTING Inventory Operating Posting (Metric Tons) RF LR RF LR Metric Tons) OCONTINUOUS SLAB MS18 33.0 1.22 40.3 2.04 67.3 33 Nype 1-1 17.0 1.32 22.4 2.20 37.4 17 Type 1-2 27.0 1.19 32.1 1.99 53.6 27 Operating MS18 33.0 1.24 40.8 2.06 68.1 33 Operating MS18 33.0 1.24 40.8 2.06 68.1 33 MS18 33.0 1.24 40.8 2.06 68.1 33 33 33 33 34 35 17 35 17 34 35 17 35 34 33 35 17 35 34 33 35 17 35 38 33 36 37 35 36 37 36 37 36 37 35 36	Inventory Operating Postin (Metric T INVENTINUOUS SLAB MS18 33.0 1.22 40.3 2.04 67.3 33 MS18 33.0 1.22 40.3 2.04 67.3 33 Type 1-1 17.0 1.32 22.4 2.20 37.4 17								
Summary of Load Posting Posting (Metric Tons) RF LR RF LR (Metric Tons) Ocontinuous slab MS18 33.0 1.22 40.3 2.04 67.3 33 Type 1-1 17.0 1.32 22.4 2.20 37.4 17 Type 1-2 27.0 1.19 32.1 1.99 53.6 27 ype 12-2 38.0 1.33 50.7 2.23 84.7 38 Ocantilever slab MS18 33.0 1.24 40.8 2.06 68.1 33 Type 1-1 17.0 1.25 21.3 2.09 35.5 17 Type 1-2 27.0 1.13 30.5 1.89 51.0 27 ype 12-2 38.0 1.27 48.2 2.12 80.5 38 Load Posting MS18 331 Type 1-1 171 Type 1-2 38.0 1.27 48.2 2.12 80.5 38 Load Posting	Inventory Operating Postin Inventory Operating Postin RF LR RF LR (Metric T I) CONTINUOUS SLAB MS18 33.0 1.22 40.3 2.04 67.3 333 Type 1-1 17.0 1.32 22.4 2.20 37.4 17	summarized as follows.	I-						
MARY OF LOAD POSTING Inventory Operating Posting (Metric Tons) POSTINUOUS SLAB RF LR (Metric Tons) MS18 33.0 1.22 40.3 2.04 67.3 33 Type 1-1 17.0 1.32 22.4 2.20 37.4 17 Type 1-2 27.0 1.19 32.1 1.99 53.6 27 ype 12-2 38.0 1.33 50.7 2.23 84.7 38 CANTILEVER SLAB MS18 33.0 1.24 40.8 2.06 68.1 33 MS18 33.0 1.27 48.2 2.12 80.5 38 MS18 331 Type 1-1 171 Type 1-1 171	Inventory Operating Postin RF LR RF LR (Metric 1) I) CONTINUOUS SLAB 1.22 40.3 2.04 67.3 333 MS18 33.0 1.32 22.4 2.20 37.4 17						l		
Inventory Operating Posting (Metric Tons) RF LR RF LR (Metric Tons) MS18 33.0 1.22 40.3 2.04 67.3 33 Type 1-1 17.0 1.32 22.4 2.20 37.4 17 Type 1-2 27.0 1.19 32.1 1.99 53.6 27 ype 12-2 38.0 1.33 50.7 2.23 84.7 38 Operating MS18 33.0 1.24 40.8 2.06 68.1 33 MS18 33.0 1.24 40.8 2.06 68.1 33 MS18 33.0 1.24 40.8 2.06 68.1 33 Mpe 1-1 17.0 1.25 21.3 2.09 35.5 17 Mpe 1-2 27.0 1.13 30.5 1.89 51.0 27 ype 12-2 38.0 1.27 48.2 2.12 80.5 38 LOAD POSTING	Inventory Operating Posting RF LR RF LR (Metric 1 1) CONTINUOUS SLAB MS18 33.0 1.22 40.3 2.04 67.3 33 Type 1-1 17.0 1.32 22.4 2.20 37.4 17	ARY OF LOAD) POSTING	•					
RF LR RF LR (Metric Tons) MS18 33.0 1.22 40.3 2.04 67.3 33 Type 1-1 17.0 1.32 22.4 2.20 37.4 17 Type 1-2 27.0 1.19 32.1 1.99 53.6 27 ype 12-2 38.0 1.33 50.7 2.23 84.7 38 2) CANTILEVER SLAB MS18 33.0 1.24 40.8 2.06 68.1 33 Type 1-1 17.0 1.25 21.3 2.09 35.5 17 Type 1-2 27.0 1.13 30.5 1.89 51.0 27 ype 12-2 38.0 1.27 48.2 2.12 80.5 38 LOAF POSTING MS18 331 1.27 48.2 2.12 80.5 38 LOAF POSTING MS18 331 1.71 171 171 171 ype 1-2 38.0 1.27 48.2 <	RF LR RF LR (Metric 1) 1) CONTINUOUS SLAB MS18 33.0 1.22 40.3 2.04 67.3 33 Type 1-1 17.0 1.32 22.4 2.20 37.4 17		Inventory		Opero	ating	Posting		
MS18 33.0 1.22 40.3 2.04 67.3 33 Type 1-1 17.0 1.32 22.4 2.20 37.4 17 Type 1-2 27.0 1.19 32.1 1.99 53.6 27 ype 12-2 38.0 1.33 50.7 2.23 84.7 38 CANTILEVER SLAB MS18 33.0 1.24 40.8 2.06 68.1 33 fype 1-1 17.0 1.25 21.3 2.09 35.5 17 fype 1-2 27.0 1.13 30.5 1.89 51.0 27 ype 12-2 38.0 1.27 48.2 2.12 80.5 38 LOAD POSTING MS18 331 Type 1-1 171 grape 1-2 270 1.13 2.12 80.5 38 LOAD POSTING MS18 331 171 171 grape 1-2 271 171 171 171	MS18 33.0 1.22 40.3 2.04 67.3 33 Type 1-1 17.0 1.32 22.4 2.20 37.4 17		RF	LR	RF	LR	(Metric Tor	ns)	
MS16 33.0 1.22 40.3 2.04 67.3 33 Type 1-1 17.0 1.32 22.4 2.20 37.4 17 Type 1-2 27.0 1.19 32.1 1.99 53.6 27 ype 12-2 38.0 1.33 50.7 2.23 84.7 38 2) CANTILEVER SLAB	Type 1-1 17.0 1.32 22.4 2.04 07.5 33	NUCUS SLAB	1.00	10.3	204	473	22		
Type 1-2 27.0 1.19 32.1 1.99 53.6 27 ype 12-2 38.0 1.33 50.7 2.23 84.7 38 CANTILEVER SLAB State Sta		17.0	1.32	22.4	2.20	37.4	17		
ype 12-2 38.0 1.33 50.7 2.23 84.7 38 CANTILEVER SLAB MS18 33.0 1.24 40.8 2.06 68.1 33 Type 1-1 17.0 1.25 21.3 2.09 35.5 17 Type 1-2 27.0 1.13 30.5 1.89 51.0 27 ype 12-2 38.0 1.27 48.2 2.12 80.5 38 LOAD POSTING MS18 331 Type 1-1 171 Type 1-2 271 271 171 171	Type 1-2 27.0 1.19 32.1 1.99 53.6 27	27.0	1.19	32.1	1.99	53.6	27		
MS18 33.0 1.24 40.8 2.06 68.1 33 Type 1-1 17.0 1.25 21.3 2.09 35.5 17 Type 1-2 27.0 1.13 30.5 1.89 51.0 27 ype 12-2 38.0 1.27 48.2 2.12 80.5 38 LOAD POSTING MS18 331 Type 1-1 17T Type 1-2 27T	Type 12-2 38.0 1.33 50.7 2.23 84.7 38 2) C ANTUEVED SLAP		1.33	50.7	2.23	84.7	38		
Type 1-1 17.0 1.25 21.3 2.09 35.5 17 Type 1-2 27.0 1.13 30.5 1.89 51.0 27 ype 12-2 38.0 1.27 48.2 2.12 80.5 38 LOAD POSTING MS18 331 Type 1-1 171 Type 1-2 271	MS18 33.0 1.24 40.8 2.06 68.1 33	33.0	1.24	40.8	2.06	68.1	33		
Type 1-2 27.0 1.13 30.5 1.89 51.0 27 ype 12-2 38.0 1.27 48.2 2.12 80.5 38 LOAD POSTING MS18 331 Type 1-1 171 Type 1-2 271	Type 1-1 17.0 1.25 21.3 2.09 35.5 17	17.0	1.25	21.3	2.09	35.5	17		
ype 12-2 38.0 1.27 48.2 2.12 80.5 38 LOAD POSTING MS18 33T Type 1-1 17T Type 1-2 27T	Type 1-2 27.0 1.13 30.5 1.89 51.0 27	27.0	1.13	30.5	1.89	51.0	27		
MS18 33T Type 1-1 17T Type 1-2 27T	Type 12-2 38.0 1.27 48.2 2.12 80.5 38	38.0	1.27	48.2	2.12	80.5			
Type 1-1 17T Type 1-2 27T	MS18 33 T				ŀ	MS18	33T		
Type 1-2 27T	Type 1-1 17					Type 1-1	171		
	Type 1-2 27T					Type 1-2	27T		

	DEPARTMENT OF PUBLIC V	VORKS AND HIGHWAYS	BRIDGE ID :	PA	GE :
	LOAD RATING C	ALCULATIONS	BRIDGE NAME :	RC DECK SLAB	
					NOTES
	INT	ENTIONALLY BLANK			
		-			
RATED BY :	DATE :	CHECKED	3Y :	DATE :	

Manual For Load Rating Of Bridges

3rd Edition

APPENDIX III RATING CALCULATION AIDS

APPENDIX III - A

LIVE LOAD LAYOUT IN TRAFFIC LANES

ONE-LANE TRUCK LOADING PATTERN (RATING LIVE LOAD)

NOTE:

THIS LOAD PATTERN IS USED FOR SPANS OVER 60m IN LENGTH TO SIMULATE TRAIN OF VEHICLES SPACED AT 9m CLEAR IN ONE LANE AND A SINGLE VEHICLE LOAD IN THE ADJACENT LANES

TWO-LANE TRUCK TRAIN LOADING PATTERN (POSTING LIVE LOAD)

APPENDIX III - B.1 DPWH DESIGN GUIDELINES DESIGN LIVE LOAD BENDING MOMENT FOR SIMPLE SPANS (PER WHEEL LINE, NO IMPACT)

APPENDIX III - B.2 DPWH DESIGN GUIDELINES DESIGN LIVE LOAD SUPPORT SHEAR FOR SIMPLE SPANS (PER WHEEL LINE, NO IMPACT)

APPENDIX III - C MAGNITUDE AND LAYOUT OF WHEEL LOADS FOR LOAD RATING AND LOAD POSTING (PER WHEEL LINE)

APPENDIX III - D

MAXIMUM ABSOLUTE LIVE LOAD MOMENT FOR SIMPLE BEAM

Basic Principles:

- 1 The absolute maximum bending moment due to a series of concentrated wheel loads moving on a simple span beam always occur near the center of the span directly under one of these loads (in this case, wheel P₃ at point m).
- 2 The loading pattern producing the absolute maximum moment in the simple beam is when the center of the beam (point c) is between the resultant load (ΣP) and one of the maximum adjacent concentrated wheel load (in this case, wheel P₃), as shown below.

D.1 CASE OF TRUCK LOADING TYPE 1-1

Case 1 (when L < 8.10m) - Consider only ONE wheel, P = 66.8kN

		= L/2		[D.1-1]
Case 2	M _{pmax} = 66.8(L)/4 (when L ≥ 8.10m) - Full Truck			[D.1-2]
		t X = ((L+0.853)/2	[D.1-3]

$$M_{pmax} = (83.5/L)[(L-0.853)/2]^2$$

Example:

1. When L = 4m, $M_pmax = 66.8(4)/4$ = 66.8 kN-m 2. When L = 20m, $M_pmax = (83.5/20)[(20-0.853)/2]^2$ = 382.65 kN-m

[D.1-4]

D.2 CASE OF TRUCK LOADING TYPE 1-2

Case 1 (when L < 8.62m) - Consider only TWO wheels, P = 2 @ 45.05kN

$ \begin{split} M_{\rm p} &= 90.1(X-1.219/2)(L-X)/L \\ & dM_{\rm p}/dX \; = \; 90.1(L-2X+0.6095)/L \; = \; 0, \end{split} $	t	X = (L+0.6095)/2	[D.2-1]
$M_{pmax} = (90.1/L)[(L-0.6095)/2]^2$			[D.2-2]

Case 2 (when L ≥ 8.62m) - Full Truck

$ M_{p} = 132.5(X-1.049)(L-X)/L - (45.05)(1.219) dM_{p}/dX = 132.5(L-2X+1.049)/L = 0, $	t	X = (L+1.049)/2	[D.2-3]
M _{pmax} = (132.5/L)[(L-1.049)/2] ² - 54.92			[D.2-4]

Example:

1. When L = 4m, $M_p max = (90.1/4)[(4-0.6095)/2]^2 = 64.73$ 2. When L = 20m, $M_p max = (132.5/20)[(20-1.049)/2]^2 - 54.92 = 539.91 kN-m$

kN-m

D.3 CASE OF TRUCK LOADING TYPE MS18

Case 1 (when L < 7.47m) - Consider only ONE wheel, P = 72kN

$$M_{p} = 72(X)(L-X)/L \qquad [D.3-1]$$

$$dM_{p}/dX = 72(L-2X)/L = 0, t X = L/2 \qquad [D.3-2]$$

Case 2 (when $7.47 \le L < 10.67m$) - Consider only TWO wheels, P = 2 @ 72kN

	t	X = (L+2.134)/2	[D.3-3]
$M_{pmax} = (144/L)[(L-2.134)/2]^2$			[D.3-4]

Case 3 (when L ≥ 10.67m) - Full Truck

	t	X = (L+1.422)/2	[D.3-5]
$M_{pmax} = (162/L)[(L-1.422)/2]^2 - 76.81$			[D.3-6]

Example:

1. When L = 4m, M _p max = 72(4)/4	=	72 kN-m
2. When L = 10m, M _p max = (144/10)[(10-2.134)/2] ²	=	222.75 kN-m
3. When L = 20m, M _p max = (162/20)[(20-1.422)/2] ² - 76.81	=	622.10 kN-m

D.4 CASE OF TRUCK LOADING TYPE 12-2

	(00.0						
	dMp/dX	=	80.3(L-2X+0.6095)/L = 0	Э,	t	X = (L+0.6095)/2	
Mp = 80.3(X-0.6095)(L-X)/L							[D.4-1]

$M_{pmax} = (80.3/L)[(L-0.6095)/2]^2$[D.4-2]

Case 2 (when 6.53≤ L<14.72m) - Consider THREE wheels, P = 2 @ 40.15kN + 25.9kN

$ \begin{split} M_{\rm p} &= 106.2(X-0.357)(L-X)/L - (40.15)(1.219) \\ & dM_{\rm p}/dX \; = \; 106.2(L-2X+0.357)/L \; = \; 0, \end{split} $	t	X = (L+0.357)/2	[D.4-3]
$M_{pmax} = (106.2/L)[(L-0.357)/2]^2 - 48.94$			[D.4-4]

Case 3 (when L ≥ 14.72m) - Full Truck

Mp =	186.5(X-2.252)(L-X)/L - (40.15)(1.219) - (25.9)(4.572)	[D.4-5	5]
	$dM_p/dX = 186.5(L-2X+2.252)/L = 0$, t $X = (L+2.252)/2$		
		_	

$M_{pmax} = (186.5/L)[(L-2.252)/2]^2 - 167.36$[D.4-6]

Example:

1. When L = 4m, $M_p max = (80.3/4)[(4-0.6095)/2]^2$	=	57.69 kN-m
2. When L = 10m, M _p max = (106.2/10)[(10-0.357)/2] ² - 48.94	=	197.94 kN-m
3. When L = 20m, M _p max = (186.5/20)[(20-2.252)/2] ² - 167.36	=	566.96 kN-m

APPENDIX III - D.5

LIVE LOAD MOMENTS ON LONGITUDINAL STRINGERS OR GIRDERS

LIVELOAD MOMENT IN KILONEWTON-METER PER WHEELL					R WHEEL LINE
SPAN (m)	IMPACT (%)	MS18 (HS20)	TYPE 1-1	TYPE 1-2	TYPE 12-2
2.0	30	36.0	33.4	22.6	20.1
3.0	30	54.0	50.1	43.0	38.3
3.5	30	63.0	58.5	53.8	48.0
4.0	30	72.0	66.8	64.8	57.7
4.5	30	81.0	75.2	75.8	67.6
5.0	30	90.0	83.5	86.9	77.4
5.5	30	99.0	91.9	98.0	87.3
6.0	30	108.0	100.2	109.1	97.3
6.5	30	117.0	108.6	120.3	107.2
7.0	20	126.0	116.0	120.5	119.5
7.0	20	120.0	125.2	142.6	121.7
7.5	30	130.3	123.3	142.0	131.7
8.0	30	104.9	133.0	155.6	145.0
8.5	30	171.7	143.7	165.0	158.2
9.0	30	188.6	154.0	177.8	171.5
9.5	30	205.7	164.3	194.2	184.7
10.0	30	222.8	174.7	210.5	198.0
11.0	30	261.0	195.4	243.3	224.5
12.0	30	300.9	216.2	276.2	251.0
13.0	30	340.9	237.0	309.1	277.6
14.0	29	380.9	257.8	342.0	304.1
15.0	29	421.0	278.6	374.9	337.8
16.0	28	461.2	299.4	407.9	383.5
17.0	28	501.4	320.2	440.9	429.2
18.0	27	541.6	341.0	473.9	475.1
19.0	27	581.9	361.9	506.9	521.0
20.0	26	622.2	382.7	540.0	567.0
21.0	26	662.5	403.5	573.0	613.1
22.0	25	702.8	424.4	606.0	659.2
23.0	25	743.1	445.2	639.1	705.3
24.0	25	783.5	466.1	672.2	751.5
25.0	24	823.8	486.9	705.2	797.8
26.0	24	864.2	507.8	738.3	844.0
27.0	23	904.6	528.6	771.4	890.3
28.0	23	945.0	549.5	804.4	936.6
29.0	23	985.4	570.3	837.5	983.0
30.0	22	1025.8	591.2	870.6	1029.3
32.0	22	1106.6	632.9	936.8	1122.1
34.0	21	1187.5	674.6	1003.0	1214.9
36.0	21	1268.3	716.4	1069.1	1307.8
38.0	20	1349.2	758.1	1135.3	1400.7
40.0	20	1430.1	799.8	1201.5	1493.6
45.0	18	1639.71	904.1	1367.1	1726.1
50.0	/ 1/	1968.8^	1008.5	1532.6	1958.7
55.U	10 14	2321.2"	1112.8	1098.2	2191.4
60.0	10	2122.2*	1211.2	2020.2	2424.1
70.0	10	2579 9*	1425.0	2029.3	2007.0
70.0	14	4054.7*	1420.9	2194.9	2009.0
10.0	ان 10	4004.7	1030.3	2300.3	3122.1
80.0	۱ <i>ز</i>	4000.0	1034.0	2020.1	3335.0
90.0	12	5058.8°	1843.4	2007.3	3821.6
100.0		6875.U^	2052.1	3188.5	4287.6

FOR SIMPLE SPANS PER WHEEL LINE. WITHOUT IMPACT

NOTES:

 * MS18 Lane Loading governs at these spans.
 Shaded values indicate load effects greater than the MS18 rating live load. However, Section 3.2.4 of the DPWH Design Guidelines requires design using load effects by Alternate Military Loading and Permit Design Load, which is greater than the shaded values.

MAXIMUM LIVE LOAD MOMENT FOR SIMPLE SPANS (RATING AND POSTING VEHICLES)

PER WHEEL LINE WITHOUT IMPACT

APPENDIX III - E

MAXIMUM ABSOLUTE LIVE LOAD SHEAR FOR SIMPLE BEAM

Basic Principles:

- The absolute maximum shear to the left of the support due to a series of concentrated wheel loads moving on a simple span beam always occur at the left of the support directly under last heavier wheel (in this case, wheel Pn at point B).
- 2 The loading pattern producing the absolute maximum shear in the simple beam is when the last heavier wheel is at an infinitesimal distance from the support (in this case, wheel Pn), as shown below.

E.1 CASE OF TRUCK LOADING TYPE 1-1

E.2 CASE OF TRUCK LOADING TYPE 1-2

Case 1 (when L ≤ 5.791m) - Consider only TWO wheels, P = 2 @ 45.05kN

$V_p = 90.1(X-1.219/2)/L$	[E.2-1	1]
---------------------------	---	-------	----

$X \rightarrow L$		
$V_{pmax} = 90.1(1-0.6095/L)$	(in kN)	 [E.2-2]

Case 2 (when L > 5.791m) - Full Truck

V_p = 132.5(X-2.268)/L [E.2-3]

Example:

1. When L = 4m, $V_p max = 90.1(1-0.6095/4)$ = 76.37 kN-m2. When L = 20m, $V_p max = 132.5(1-2.268/20)$ = 117.47 kN-m

E.3 CASE OF TRUCK LOADING TYPE MS18

Case 1 (when $L \leq 4.267m$) - Consider only ONE wheel, P = 72kN

$$V_p = 72(X)/L$$
 [E.3-1]

$$X \to L$$

 $V_{pmax} = 72 \text{ kN}$ [E.3-2]

Case 2 (when $4.267 < L \le 8.534m$) - Consider only TWO wheels, P = 2 @ 72kN

$$V_p = 144(X-4.267/2)/L$$
 [E.3-3]

Case 3 (when L > 8.534m) - Full Truck

Example:

1. When L = 4m, V _p max	=	72 kN
2. When L = 8m, V _p max = 144(1-2.134/8)	=	105.59 kN
3. When L = 20m, V _p max = 162(1-2.845/20)	=	138.96 kN

E.4 CASE OF TRUCK LOADING TYPE 12-2

Case 2 (when 4.572 < L \leq 12.497m) - Consider THREE wheels, P = 2 @ 40.15kN + 25.9kN

Case 3 (when L > 12.497m) - Full Truck

Example:

1. When L = 4m, V _p max = 80.3 (1-0.6095/4)	=	68.06 kN
2. When L = 10m, V _p max = 106.2(1-1.576/10)	=	89.46 kN
3. When L = 20m, V _p max = 186.5(1-5.673/20)	=	133.60 kN

APPENDIX III - E.5

LIVE LOAD SHEARS ON LONGITUDINAL STRINGERS OR GIRDERS FOR SIMPLE SPANS PER WHEEL LINE, WITHOUT IMPACT

SDAN (m)	IMPACT (%)	LIVE LOAD SUPPORT SHEAR IN KN PER WHEEL LINE			
SPAN (III)		MS18 (HS20)	TYPE 1-1	TYPE 1-2	TYPE 12-2
2.0	30	72.0	66.8	62.7	55.9
3.0	30	72.0	66.8	71.8	64.0
3.5	30	72.0	66.8	74.5	66.4
4.0	30	72.0	66.8	76.4	68.1
4.5	30	75.8	67.7	77.9	69.5
5.0	30	82.6	69.3	79.2	72.8
5.5	30	88.2	70.6	80.2	75.8
6.0	30	92.8	71.7	82.5	78.4
6.5	30	96.8	72.6	86.3	80.5
7.0	30	100.2	73.4	89.6	82.3
7.5	30	103.1	74.1	92.5	83.9
8.0	30	105.6	74.6	95.0	85.3
8.5	30	107.8	75.2	97.2	86.6
9.0	30	110.8	75.6	99.2	87.7
9.0	30	113.5	76.0	100.9	88.6
9.5	20	116.0	76.1	102.5	80.5
10.0	30	110.0	70.4	102.3	09.0
11.0	30	120.2	77.6	105.2	93.9
12.0	30	123.0	79.1	107.5	99.5
13.0	30	120.0	70.1	109.4	105.2
14.0	29	129.1	70.0	111.1	110
15.0	29	131.3	78.8	112.5	116.0
16.0	28	133.2	79.1	113.8	120.4
17.0	28	134.9	79.4	114.9	124.3
18.0	27	136.4	79.6	115.9	127.8
19.0	27	137.8	79.8	116.7	130.9
20.0	26	139.0	80.0	117.5	133.6
21.0	26	140.1	80.2	118.2	136.2
22.0	25	141.1	80.3	118.9	138.5
23.0	25	142.0	80.5	119.5	140.6
24.0	25	142.8	80.6	120.0	142.5
25.0	24	143.6	80.7	120.5	144.2
26.0	24	144.3	80.8	121.0	145.9
27.0	23	145.0	80.9	121.4	147.4
28.0	23	145.6	81.0	121.8	148.8
29.0	23	146.2	81.1	122.2	150.1
30.0	22	146.7	81.2	122.5	151.3
32.0	22	147.6	81.3	123.2	153.5
34.0	21	148.5	81.5	123.7	155.4
36.0	21	149.2	81.6	124.2	157.2
38.0	20	149.9	81.7	124.6	158.7
40.0	20	152.0*	81.8	125.0	160.1
45.0	18	163.8*	82.0	125.9	163.0
50.0	17	175.5*	82.1	126.5	165.4
55.0	16	187.3*	82.3	127.1	167.3
60.0	16	199.0*	82.4	127.5	168.9
65.0	15	210.8*	82.5	127.9	170.3
70.0	14	222.5*	82.5	128.3	171.4
75.0	13	234.3*	82.6	128.5	172.4
80.0	13	246.0*	82.7	128.8	173.3
90.0	12	269.5*	82.8	129.2	174.8
100.0	l II	293.0*	82.8	129.5	176.0

NOTES:

3.

* MS18 Lane Loading governs at these spans. Shaded values indicate load effects greater than the MS18 rating live load. However, Section 4. 3.2.4 of the DPWH Design Guidelines requires design using load effects by Alternate Military Loading and Permit Design Load, which is greater than the shaded values.

MAXIMUM LIVE LOAD SUPPORT SHEARS FOR SIMPLE SPANS (RATING AND POSTING VEHICLES)

PER WHEEL LINE WITHOUT IMPACT

APPENDIX III - F.1

MAXIMUM MOMENT & SHEAR AT ANY POINT ON SPAN FOR TYPE 1-1 POSTING VEHICLE (SIMPLE SPAN ONLY)

BENDING MOMENT AT POINT "P" (MP) in kN-m PER WHEEL LINE (NO IMPACT)

Case 1
$$M_P = \frac{66.8 (X)(L - X)}{L}$$
 when $L < 4.267m$
Case 2 $M_P = \frac{83.5 (L - X)(X - 0.853)}{L}$ when $X \ge 4.267m$

SHEAR AT RIGHT OF POINT "P" (VP) in kN PER WHEEL LINE (NO IMPACT)

Case 1
$$V_P = \frac{66.8 (X)}{L}$$
 when $L < 4.267m$
Case 2 $V_P = \frac{83.5 (X - 0.853)}{L}$ when $X \ge 4.267m$
APPENDIX III - F.2

MAXIMUM MOMENT & SHEAR AT ANY POINT ON SPAN FOR TYPE 1-2 POSTING VEHICLE (SIMPLE SPAN ONLY)

BENDING MOMENT AT POINT "P" (MP) in kN-m PER WHEEL LINE (NO IMPACT)

LOAD		FORMULA FOR MAXIMUM MOMENT AT POINT "P" (M _P)		Minimum		TRUCK
CASE	L-X/L			X (m)	POINT "P"	DIRECTION
1	0 - 0.340	$M_{P} = \frac{132.5 (X - 2.268)(L - X)}{L}$	0	5.791	3	R - L
2	0.340 - 0.500	$M_{P} = \frac{132.5 (X - 1.049)(L - X)}{L} - 54.92$	1.219	4.572	2	R - L

SHEAR AT RIGHT OF POINT "P" (VP) in kN PER WHEEL LINE (NO IMPACT)

LOAD		FORMULA FOR MAXIMUM SHEAR AT	Minimum		AXLE NO. @ PANEL POINT "P"	TRUCK TRAVEL DIRECTION
CASE	POINT "P" (V _P)		L-X (m)	X (m)		
1	0 - 0.500	$V_{P} = \frac{132.5 (X - 2.268)}{L}$	0	5.791	3	R - L

NOTE : Shear formula is applicable when dimension "X" exceeds the total length of truck. When "X" is less than the minimum, determine shears by statics.

APPENDIX III - F.3

MAXIMUM MOMENT & SHEAR AT ANY POINT ON SPAN FOR MS18 RATING VEHICLE (SIMPLE SPAN ONLY)

NOTE : *The following formulas are applicable when the entire truck is within the span.

**Lane Load governs when L > 44.05m

***Truck loading does not govern shear beyond this length specified. Use lane loading.

BENDING MOMENT AT POINT "P" (MP) in kN-m PER WHEEL LINE (NO IMPACT)

LOAD		Formula for maximum moment at	Minii	Max		
CASE	L-X/L	POINT "P" (M _P)	L-X (m)	X (m)	(m)	
1	0 - 0.333	$M_{P} = \frac{162 (X - 2.845)(L - X)}{L}$	0	8.534	-	
2	0.333 - 0.500	$M_{P} = \frac{162 (X - 1.422)(L - X)}{L} - 76.81$	4.267	4.267	44.05	

SHEAR AT RIGHT OF POINT "P" (VP) in kN PER WHEEL LINE (NO IMPACT)

LOAD		Use for	FORMULA FOR MAXIMUM SHEAR AT POINT	Minimum		
CASE	L-X/L	Girder Lengths	"P" (V _P)	L-X (m)	X (m)	
1	0 - 0.500	Under 12.80m	$V_{P} = \frac{162 (X - 1.422)}{L} - 18$	4.267	4.267	
2		12.8m -	V _P = 162 (X - 2.845)	0	8.534	

36.6m*** L

APPENDIX III - F.4

MAXIMUM MOMENT & SHEAR AT ANY POINT ON SPAN FOR TYPE 12-2 POSTING VEHICLE (SIMPLE SPAN ONLY)

NOTE : The following formulas are applicable when the entire truck is within the span.

BENDING MOMENT AT POINT "P" (MP) in kN-m PER WHEEL LINE (NO IMPACT)

LOAD		Formula for maximum moment at	Minimum		AXLE NO. @	TRUCK TRAVEL DIRECTION
CASE L-X/L		POINT "P" (M♭)	L-X (m)	X (m)	PANEL POINT "P"	
1	0 - 0.211	$M_{P} = \frac{186.5 (X - 5.673)(L - X)}{L}$	0	12.497	5	R - L
2	0.211 - 0.354	$M_{P} = \frac{186.5 (X - 3.471)(L - X)}{L} - 86.84$	3.353	9.144	2	L - R
3	0.354 - 0.500	$M_{P} = \frac{186.5 (X - 2.252)(L - X)}{L} - 167.36$	4.572	7.925	3	L - R

SHEAR AT RIGHT OF POINT "P" (VP) in kN PER WHEEL LINE (NO IMPACT)

				Minimum		TRUCK	
CASE	L-X/L	POINT "P" (V _P)	L-X (m)	X (m)	Panel Point "P"	TRAVEL DIRECTION	
1	0 - 0.500	V _P = 186.5 (X - 5.673)	0	12.497	5	R - L	

				L					
--	--	--	--	---	--	--	--	--	--

APPENDIX III - G

MAXIMUM SHEAR AT ANY PANEL POINT

- L : Length of Truss
- LT : Axle Spacing/Distance
- P : Length of Panel
- X : Distance from Panel Point to End of Truss

SHEAR AT PANEL POINT (Vc) IN kN PER WHEEL LINE (NO IMPACT)

LOAD TYPE	LT (m)	MIN "X" (m)	FORMULA	USE FOR TRUSS WITH NO. OF PANELS	axle No. @ Panel Point	TRUCK TRAVEL DIRECTION
TYPE 1-2	5.791	5.791	$V_{P} = \frac{132.5 (X - 2.268)}{L}$	ALL	3	L - R
TYPE 12-2	12.497	12.497	$V_{P} = \frac{186.5 (X - 5.673)}{L}$	5 OR MORE	5	L - R
		9.144	$V_{P} = \frac{186.5 (X - 3.471)}{L} - \frac{86.84}{P}$	3, 4	2	R - L
		7.925	$V_{P} = \frac{186.5 (X - 2.252)}{L} - \frac{167.35}{P}$	2	3	R - L

NOTES:

- Applicable only when entire truck is within the span
- See Appendix IV F for shears resulting from Type 1-1 and MS18
- Truck Travel Direction : L R Truck
- L R Truck moving from Left to Right R - L - Truck moving from Right to Left

Manual For Load Rating Of Bridges

3rd Edition

APPENDIX IV LOAD POSTING SIGN

DETAILS OF INSTALLATION

- 300 x 300 x 25 BASE PLATE - 4-01/2"x12" ANCHOR BOLTS

Æ

PLAN

DETAILS OF PEDESTAL

DETAILS OF SERIES 120DN LETTERS & NUMERICAL DIMENSIONS

MANUAL FOR LOAD RATING OF BRIDGES

3rd Edition

USER'S MANUAL

APPENDIX V

321

User's Manual for Load Rating Computer-Based Program

Table of Contents

1	General	1
2	Function of this Program	1
3	Installation of Software	1
4	Installing and Uninstalling Procedure of CBPLR	1
4.1	Installing	1
4.1.1	Copy to Your Computer Directory C: drive	2
4.1.2	Starting	2
4.2	Uninstalling	2
5	Procedure of "MENU" in this Program	3
5.1	Title	3
5.2	Flowchart of Load rating Procedure	3
5.3	Bridge Condition Inspection Results	4
5.4	Menu of Load Rating	4
6	Procedure of "Load Rating Program of each Bridge Type" in this Program	5
6.1	General	5
6.1.1	Load Rating Principles	5
6.1.2	Damage Evaluation	6
6.1.3	Program Contents	7
6.1.4	Differences Between Interior Girder and Exterior Girder	8
6.1.5	Differences between Simple Girder and Continuous Girder	8
6.1.6	Meaning of Colored Cells	9
6.1.7	Drawings Attached with Each Bridge Type	9
6.2	RCFS (Reinforced Concrete Flat Slab Bridges)	10
6.2.1	Simple RCFS	10
6.2.2	Continuous RCFS	21
6.3	RCDG (Reinforced Concrete Deck Girder Bridges)	32
6.3.1	Simple RCDG	32
6.3.2	Continuous RCDG	43
6.4	PCDG (Prestressed Concrete Deck Girder Bridges)	54
6.4.1	Simple PCDG	54
6.4.2	Continuous PCDG	66
6.5	Steel I-Girder Bridges	78
6.5.1	Simple SIG	78
6.5.2	Continuous SIG	85
6.6	RCDECK (Reinforced Concrete Deck Slab)	92

User's Manual of Computer-Based Program on Load Rating

1. General

This User's Manual is divided into 6 sections showing the detail procedure for Load Rating. DPWH through the assistance of JICA developed Manual for Load Rating of Bridges (MLRB) 2nd Edition on March, 2009. In addition, a Computer-based Program on Load Rating of Bridges (CBPLR) has been developed to complement MLRB. This 3_{rd} Edition 2014, retains the original CBPLR established in 2009.

This Program has the following advantages:

- (1) It is easy to calculate the Load Rating for Major Bridge Types.
- (2) This Program provides 4 Bridge Types including RC Deck Slab, not only Simple and Continuous Bridges but also Interior and Exterior Girder. (refer to Section 5)
- (3) DPWH Engineers can save time to determine the appropriate Load Rating
- (4) DPWH Engineers can avoid inappropriate Load Rating Calculations

However, the pilot Bridges for Load Rating example have some unknown factors, therefore the User should carefully give the Input Data with appropriate engineering judgements in this Program as follows.

- (1) To determine and measure appropriate Bridge Layout and Dimensions
- (2) To determine and assume appropriate Rebar/PC Tendon Schedule inside concrete components of Bridges
- (3) To determine and assume appropriate Material Properties.
- (4) To determine the appropriate evaluation for Bridge Current Condition (Damage).

2. Function of this Program

This Program provides Load Rating Calculations of Bridges.

3. Installation of Software

This Program requires the following softwares which should be installed in your computer. Microsoft Excel 2003 or 2007 or 2010

Microsoft Windows XP or Vista or Windows 7

4. Installing and Uninstalling Procedures of CBPLR

4.1 Installing

- (1) Start your computer
- (2) Insert the CBPLR set up CD. Then you can see the program files and folder as shown below.
- (3) "Copy" the Program "CBPLR".
- (4) "Paste" it to your computer root directory C:

Insert Program CD to your PC

4.1.1 Copy to your computer directory C: drive

4.1.2 Starting

Double click folder "Load Rating Program" and "MENU" then Excel file "MENU"

4.2 Uninstalling

Delete "CBPLR" from Directory C:

5. Procedure of "MENU" in this Program

5.1 TITLE

After opening the Excel file "Menu", then click button

REPUBLIC OF THE PHILIPPINES DEFARTMENT OF PUBLIC WORKS AND HIGHWAYS	
LOAD R COMPUTER-BA	RATING SED PROGRAM
ENTE	R

5.2 Flowchart of Load rating Procedure

on this screen.

ENTER

5.3 Bridge Condition Inspection Results

The overall condition state G, F, P and B of the bridge should be determined by the Accredited Bridge Engineer. User should select the actual overall condition state based on the Condition Inspection Survey or Engineering Inspection Survey in Bridge Management System.

In case of selecting P and B, click button "Yes" then directly proceed to the next screen "MENU"

5.4 Menu of Load Rating

This screen links with all Excel programs for each Bridge types. The User can use the directory and proceed in selecting the bridge type by **clicking cell of the objective bridge types**. They are;

RCFS (Reinforced Concrete Flat Slab Bridge) : Simple RC Flat Slab Continuous RC Flat Slab RCDG (Reinforced Concrete Deck Girder Bridge) : Simple Interior and Exterior Girder Continuous Interior and Exterior Girder PCDG (Prestressed Concrete Deck Girder Bridge) : Simple Interior and Exterior Girder Continuous Interior and Exterior Girder SIG (Steel | Girder Bridge) : Simple Interior and Exterior Girder Continuous Interior and Exterior Girder

RCDECK (Reinforced Concrete Deck Slab)

6. Procedure of "Load Rating Program of each bridge type" in this Program

6.1 General

6.1.1 Load Rating Principles

When operating the Load Rating Program, Load Rating Principles should be kept through many activities as follows

6.1.2 Damage Evaluation

	Condition State 2-Poor or 3-Bad						
	Location (Section)	2-Poor or more at near Support or near Midspan where loaded maximum demand forces					
	For Concrete Girder						
Severity of defect At Midspan At Support	Cracking	greater than 0.3mm and its spacing smaller than 500mm					
	Rebar exposure	greater than 50 cm ² exposed and corroded					
	For Concrete Deck Slab						
	Cracking	greater than 0.3mm, 2 directions, and its spacing smaller than 500mm					
	Rebar exposure	greater than 50 cm ² exposed and corroded					
	For Steel Girder						
	Corrosion	greater than 10% section loss stratified rust with pitting of metal surface					

Damage evaluation is considered in this Program as follows:

Damage evaluation method is as follows:

	Cracking	Not consider concrete section loss of tension fiber		
	due to Moment	Consider only by rebar exposure of tension fiber		
		Consider by reduction factor (Φ) according to shear crack depth (Cw) as mentioned below Cw = > 0.5 b applying Φ = 1.0 then Shear resistance due to Concrete Vc = 0 Cw < 0.5 b then Φ = Cw / b then Shear resistance due to Concrete Vc [*] = (1- Φ) x Vc		
		For example, b = 400mm and shear crack depth 150mm		
Concrete		Vc [*] = (1-150 / 400) x Vc = 0.625 Vc		
Concrete Girder and Deck Slab	Cracking due to Shear	Shear crack depth Shear crack		
	Rebar Exposure	Section loss of main Rebar (%) based on exposed Area		
		Section loss of stirrups (%) based on exposed Area		
Steel	Corrosion	Actual section loss should be applied to steel girder dimension,		
Girder	Contrastori	and then calculate section properties considering section loss		

6.1.3 Program Contents

			1	TITLE	Cover Page		
NAENU I			2	FLOW	Flow Chart of Load Rating Procedure		
MENU			3	BCIR	Bridge Condition Inspection Results		
			4	MENU	Menu of Bridge Load Rating		
RCFS: REINFORCED CONCRETE FLAT				BRIDGE			
			1	GENERAL	A1. General Bridge Description		
			2	LAYOUT	A2. Bridge Layout and Dimension		
			3	DFDLLL	B. Demand Forces Calculation for DL and LL		
	SIMP	LE	4	CCLFM	C1. Capacity Calculations for Moment and Shear		
			5	LRLFM	C2. Load Rating Calculations by LFM		
RCFS	and	d	6	POSTLL	D1.Demand Forces for Load Posting Vehicles		
		-	7	POSTLEM	D2. Posting Rating Calculations by LFM		
	CONTINU		8	CCASM	E1. Moment and Shear Capacity Calculations		
	CONTINU	0000	9	LRASM	F2. Load Rating Calculations by ASM		
			10	POSTASM	E Load Posting by ASM		
			11	POSTSUM	G Summary of Load Posting		
RCDG			K 214				
RCDO.			1		A1 General Bridge Description		
			2		A2 Bridge Lavout and Dimension		
			2		R Domand Forces Calculation for DL and LL		
	SIMPLE		3		B. Demand Forces Calculations for Moment and Shear		
	ONVIL EE	CIPDEP	4		C1. Capacity Calculations by LEM		
	and	GIRDER	5		C2. Load Raining Calculations by LFM		
RCDG	ana		6	POSILL	D1. Demand Forces for Lodd Posting Venicies		
		EXTERIOR	/	FOSTEFM	D2. Fosting Range Calculations by LFM		
	CONTINUOUS	GIRDER	8		E1. Moment and Shear Capacity Calculations		
			9		E2. Load Railing Calculations by ASM		
			10	POSTASM	F. Lodd Posting by ASM		
				POSISUM	G. SUMMARY OF LODA POSTING		
PCDG. PRESTRESSED CONCRETE I GIR					A1 Concerd Bridge Description		
				GENERAL	A1. General Bridge Description		
			2		A2. Bridge Layout and Dimension		
			3	DFDLLL	B. Demand Forces Calculation for DL and LL		
	SIMPLE	INTERIOR	4	DSC	B3. Demand Stresses Calculations		
		GIRDER	5	CCMS	C. Capacity Calculations for Moment and Shear		
PCDG	and	and	6	LRC	C1. Load Rating Calculations		
		EXTERIOR	7	LRSUM	C2.3 Summary of Rating Factor and Load Rating		
	CONTINUOUS	GIRDER	8	POSTLL	D1. Demand Forces for Load Posting Vehicles		
		Ondern	9	POSTLR1	D2. Posting Rating Calculations		
			10	POSTLR2	D3.1 Posting Load Rating Calculations		
			11	POSTSUM	D3.3 Summary of Posting Rating Factor and Load Rating		
			12	SUMMARY	E. Summary of Load Posting		
SIG: STE	EL I-GIRDER BRID	DGE					
			1	GENERAL	A1. General Bridge Description		
	SIMPLE	INTERIOR	2	LAYOUT	A2. Bridge Layout and Dimension		
		GIRDER	3	DFDLLL	B1. Demand Forces Calculations for DL and LL		
SIG	and	and	4	DSDLLL	B5. Demand Stresses Calculations for DL and LL		
		EXTERIOR	5	LRASM	C. Load Rating Calculations by ASM		
CONTINUOUS GIRDER		6	POSTASM	D. Load Posting by ASM			
		7	POSTSUM	E. Posting Load Rating Calculations			
			1	LAYOUT	A. Bridge Layout and Dimension		
l I			2	DFDLLL	B. Demand Forces Calculations		
			3	CCLFM	C1. Capacity Calculations		
NODECK			4	LRLFM	C2. Load Rating Calculations by LFM		
			5	POSTLL	L D. Load Posting by LFM		
				POSTSUM	E Summary of Load Posting		

6.1.4 Differences Between Interior Girder and Exterior Girder

Interior	Demand	Slab Dimension only intermediate continuous slab
Girder	Forces	Live load distribution factor = \$ / 1.829
Girder	Resistance	According to Slab Dimension
Exterior	Demand	Slab Dimension composed continuous and cantilever slab
Girder	Forces	Live load distribution factor = (S - 1.829) / S
	Resistance	According to Slab Dimension

6.1.5 Differences Between Simple Girder and Continuous Girder

(1) RCFS (Reinforced Concrete Flat Slab Brdige)

Simple	Demand Forces	All Demand Forces can be calculated in this Program
Girder	Resistance	Section for Load Rating is only at Midspan calculating for Moment
	Demand	Superimposed Dead Load and Live Load supported on Continuous Girder
	Forces	should be given by separate analysis with appropriate structural model
Continuous Girder	Resistance	Sections for Load Rating are at Midspan and Pier Support calculating only for Moment Longitudinal Rebar Schedule at Pier Support should be additionally given

(2) RCDG (Reinforced Concrete Deck Slab Girder Bridge) and PCDG (Prestressed Concrete I Girder Bridge)

Simple	Demand Forces	All Demand Forces can be calculated in this Program
Girder	Resistance	Sections for Load Rating are at Midspan and Support calculating for Moment and Shear
Continuous Girder	Demand Forces	Superimposed Dead Load and Live Load supported on Continuous Girder should be given by separate analysis with appropriate structural model
	Resistance	Section for Load Rating is at Midspan and Pier Support calculating for Moment and Shear Longitudinal Rebar Schedule at Pier Support should be additionally given

(3) SIG (Steel | Girder Bridge)

Simple Girder	Demand	All Demand Forces can be calculated in this Program			
	Forces	Three (3) sections are prepared for calculation of forces			
	Resistance	Sections for Load Rating are also prepared three (3) sections at Midspan,			
		Support and severe damaged section calculating for Moment and Shear			
	Demand	Superimposed Dead Load and Live Load supported on Continuous Girder			
	Forces	should be given by separate analysis with appropriate structural model			
Continuous Girder	Resistance	Sections for Load Rating are two (2) sections at Midspan and Pier Support calculating for Moment and Shear Longitudinal Rebar Schedule at Pier Support should be additionally given			

6.1.6 Meaning of Colored Cells

Light Blue Cells	Original Input
Yellow Cells	Calculated Figures by Original Input/Calculated Figure
Orange Cells	Load Factor and Load Rating calculated by original input/calculated figures
Glay Cells	Linked Cells
White Cells	Specified Figures/Letters

Note : User can modify Light Blue Cells only.

Other cells have calculation formulas which are protected and can be not changed or altered.

6.1.7 Drawings Attached for Each Bridge Types

The drawings attached for each bridge types in this Program are just references based on initial data of Load Rating.

Properly, the drawings of an objective bridge should be individually prepared to obtain accurate input data such as bridge layout, dimensions, Rebar schedule, PC tendons schedule and others.

6.2 RCFS (Reinforced Concrete Flat Slab Bridge)

6.2.1 Simple RCFS

			RCI	S SIMP	LE			
A. GEN	IERAL						BACK	TO MENU
			A1. BRID	GE DESCI	RIPTION			
Bridge Lo	cation	REGION	VII					
Bridge No	ime							
Bridge	Simple or C	ontinuous	Simple					
Туре	Number of	Span	1					
Bridge of	Width (curb	to curb) (m)	7.32					
Number o	of Lanes		2					
Bridge Lei	ngth (m)		8.000					=8.000m
Year Built			1958					
Chrysterra	Superstruct	ure	Reinforced Concrete Slab					
Silociole	Substructur	e	Wall Type RC Piers and RC Cantilever Abutments					
Wearing	thickness (r	nm)	50					
Course	material		Asphalt					
Matorial	reportion		fc=	6.9	Мра	fs=	137.9	Мра
maieriair	ropenies		f'c=	17.2	Мра	fy=	275.8	Мра
Assumption		Weight of barrier rail Wbr =		18.5	KN/m			
		Concrete	Unit Weight	Wu =	24.0	KN/m ³		
		Asphalt Unit Weight Wa =			22.0	KN/m ³		
Others			Rating Live Load is AASHTO MS18 (HS20-44)					

NEXT

Matorial	Year of	foorfu	fc or fs			
Material	Construction	TC OF TY	Inventory	Operating	Posting	1
	Prior to 1959	17.2	6.9	10.3	6.9	
Conorato	after 1959	20.7	8.3	13.1	8.3	
Concrete	1977 to 1981	27.6	11.0	16.5	11.0	*po
	after 1981	31.0	12.4	18.6	12.4	*po
Rebar	Prior to 1954	227.5	124.1	172.4	124.1	
	after 1954	275.8	137.9	193.1	137.9	
	Grade 50	344.7	137.9	224.1	137.9	*po
	Grade 60	413.7	165.5	248.2	165.5	*po

After confirmation of this sheet, click "NEXT" button then proceed directly to the next

*pc: for Prestressed Concrete

	Note				
Input Data	Light blue cells should be filled up.				
Material Properties	It should be taken from GENERAL NOTE in the as built drawings or in the Standard Bridge Design. In case of non-availability of data, It should be taken based on the Bridge Year Built. (refer to Table shown in the above Table)				

Sheet 2 (LAYOUT): Input Data of Bridge Layout and Dimension A2. BRIDGE LAYOUT AND DIMENSION

Note					
	Light blue cells should be filled up, these are;				
Innut Data	- Girder Dimension : Overall Width				
	- Slab Dimension : Width and Thickness				
	- Span Length				
Drawings	Drawings (Elevation and Cross Section) for the objective bridge should be prepared as shown in this screen.				

Sheet 3 (DFDLLL): Demand Forces Calculations

B. DEMAND FORCES

BO. INPUT				
FOR	Slab width bw(m)	8.540		
DEAD	Slab thickness h (m)	0.450		
LOAD	Span Length L(m)	8.000		

B1. DEAD LOAD CALCULATIONS				
	Self-weight of Slab		10.800	
Uniform Load per meter of Girder (KN/m)	Barrier Rail		2.708	
	Asphalt Overlay		0.943	
	To	otal	14.450	
Deadlard	Moment (KN-m/m)	M _{DL}	115.60	
Dedd Lodd	Shear (KN)	V _{DL}	57.80	

B2. LIVE-LOAD CALCULATIONS					
LIVE-LOAD Type	MS18(HS20)				
Number of live load wheel line	0.589	INPUT FOR LIVE LOAD			
Impact factor	0.300				
span	8.000				
		without Impact	ML	154.84	
Max.M318 moment for 8.00m spar	17wheeline	with Impact	M _{LL}	118.46	
Max.M\$18 shear at a distance "d"		without Impact	VL	105.59	
from the support/wheel line		with Impact	VLL	80.78	
After confirmation of this sheet					

After confirmation of this sheet,	
click "NEXT" button then	
proceed directly to the next	

Note					
Reference	Refer to th Rating Exc	Refer to the manual calculation sheets as shown in the Appendix II "Load Rating Examples" page 128 in the Manual for Load Rating of Bridges.			
Verification	Results of a	calculations should be	verified.		
Input Data	Unnecesso	ary.			
Slab Width	Slab Width	Slab Width for Load Rating Calculations is applied 1m width.			
Live Logd Forces	They are calculated besed on the Load Rating Manual Appendix III				
Live Loda Forces	(refer to Table shown in the next pages of this Sheet 3)				
		Uniform Load W _{DL}	= A x W		
	Dead	M _{DL}	$= 1/8 \times W_{DL} \times L^2$		
	LOUG	V _{DL}	$= 1/2 \times W_{DL} \times L$		
Applied Equation		ML	Refer to Load Rating Manual Appendix III		
	Live	MLL	= ML x D.F x Impact		
	Load	VL	Refer to Load Rating Manual Appendix III		
		VLL	= ML x D.F x Impact		

Sheet 4 (CCLFM): Capacity Calculations for Moment at Midspan and Shear at Support

C. LOAD RATING BY LOAD FACTOR METHOD (LFM)

Total area of Rebar		
Nos of Rebar	10	
Dia. (mm)	28	
As(mm2)	6158	
yb (mm)	61	

C1. CAPACITY CALCULATIONS

C1. INPUT				
(1) Common Inpu	ıt Data			
	Concrete	Allowable Stress	fc	6.9
Material Properties	Concrete	Strength	f'c	17.2
(Mpa)	Pobar	Allowable Stress	fs	137.9
	Rebai	Strength	fy	275.8
(2) Input Data for	Moment C	Capacity		
Total Area of Steel As(mm ²) 10 x (28mm rebar) 6158				
Section Loss (%)				10
Total Assumed Area of Steel As(mm2)			5542	
Centroid of rebars from bottom of deck , d (mm)			61	
Centroid of rebars from top of deck , d (mm)			389	
Effective width of deck , b _{eff} (mm)			1000	
Ultimate capacity factor (Uf)			0.90	

C1. M0	OMENT CAPACITY AT MIDSPAN			
Rectangular stress block depth a (mr	n)	105.0		
The Moment Capacity Mu (kN-m)				
	After confirmation of this sheet, click "NEXT" button then proceed directly to the next	NEXT		

Note				
Reference	Refer to the manual calculation sheets as shown in the Appendix II "Load Rating Examples" page 129 in the Manual for Load Rating of Bridges.			
Verification	Results of calculations	Results of calculations should be verified.		
	Light blue cells should be filled up, these are;			
Input Data	Rebar	Main Reinforcements Schedule		
	Damage Evaluation	n Secton Losses due to Rebar exposure caused by Moment		
Drawings	Drawings (Rebar Schedule) for the objective bridge should be prepared as shown in this screen.			
Applied Equation in Output	Ultimate Moment $M_U = Uf x As' x fy x (d - a)$ Capacity M_U where, $a = (As' x fy) / (0.85 x f'c x beff)$			

Sheet 5 (LRLFM): Load Rating Calculations C2. LOAD RATING CALCULATIONS

C2.1 INPUT			
Load factor for dead load	1.3		
Inventory		2.17	
Lodd lactor for live lodd	Operating	1.3	
Moment Ultimate Capacity at Mi	462.92		
Dead Load Moment at Midspan	115.60		
Live Load Moment at Midspan (kl	118.46		
Rating Live Load (Tons)	33.0		

Note				
Reference	Refer to the manual calculation sheets as shown in the Appendix II "Load Rating Examples" page 130 in the Manual for Load Rating of Bridges.			
Verification	Results of calculation	Results of calculations should be verified.		
Input Data	Unnecessary.			
Applied Equation	Rating Factor RF	$RF = (\Phi \times Rn - \gamma_{D} \times DL) / (\gamma_{LL} \times (LL + I))$		
in Output	Load Rating LR	LR = RF x (Vehicle Weight)		

Sheet 6 (POSTLL) : Demand Forces Calculations for Load Posting Vehicles (Type 1-1, Type 1-2 and Type 12-2)

D. LOAD POSTING BY LOAD FACTOR METHOD (LFM)

D1. DEMAND FORCES FOR LOAD POSTING VEHICLES

D1.1 DEMAND FORCES FOR LOAD POSTING VEHICLES				
(1) POSTING VEHICLE Type	1-1			
LIVE-LOAD Type	Type1-1			
Number of live load wheel line	0.589]		
Impact factor	0.300			
span	8.00			
Type 1.1 memory for 8.00m span	(wheel line	without Impact	ML	133.60
Type 1-1 moment for 8.00m span ;	wheeline	with Impact	MLL	102.21
Type 1-1 shear at a distance "d"		without Impact	VL	74.60
from the support/wheel line		with Impact	V _{LL}	57.07
(2) POSTING VEHICLE Type	1-2	·		
LIVE-LOAD Type	Type1-2			
		without Impact	ML	153.79
Type 1-2 moment for 8.00m span ;	wheeline	with Impact	MLL	117.66
Type 1-2 shear at a distance "d"		without Impact	VL	94.94
from the support/wheel line		with Impact	VLL	72.64
(3) POSTING VEHICLE Type	12-2			
LIVE-LOAD Type	Type12-2			
Type 12.2 memory for 8.00m span	wheelline	without Impact	ML	144.93
rype 12-2 moment for 8.00m span ;	wheeline	with Impact	MLL	110.88
Type 12-2 shear at a distance "d"		without Impact	VL	85.28
from the support/wheel line	from the support/wheel line		V _{LL}	65.24
	Δft	er confirmation c	of this sheet	NEXT

Note				
Reference	Refer to the manual calculation sheets as shown in the Appendix II "Load Rating Examples" page 130 in the Manual for Load Rating of Bridges.			
Verification	Results of a	Results of calculations should be verified.		
Input Data	Unnecesso	Unnecessary.		
Posting Live Load	They are calculated besed on the Load Rating Manual Appendix III.			
Forces	(refer to Table shown in the next pages of this Sheet 6)			
		ML	Refer to Load Rating Manual Appendix III	
Applied Equation	Posting	MLL	= ML x D.F x Impact	
in Output	Live	VL	Refer to Load Rating Manual Appendix III	
		VLL	= ML x D.F x Impact	

Sheet 7 (POSTLFM) :	Postina Ratina	Calculations
D2. POSTING RATING CALCULATIONS		

D2.1 INPUT				
Load factor for dead load			1.3	
Load factor for live load	Inve	entory	2.17]
Lodd Idciol for live lodd	Ope	erating	1.3	
			Moment	1
Moment Ultimate Capacity			462.92	1
Dead Load			115.60	
			Moment	Vehicle Weight
Live Load Moment at Midspan (kN-m) Live Load Shear at Support (KN)		M\$18	118.46	33.0
		Type 1-1	102.21	17.0
		Type 1-2	117.66	27.0
		Type 12-2	110.88	38.0

	D2.2 LOAD POSTING RATING FACTOR CALCULATIONS BY LFM						
	Vehicle Invento		ry Rating	Operating Rating		Postina	
Vehicle Type	Weight (Metric	Mor	ment	Mor	nent	(Metric	
.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Tons)	RF	LR	RF	LR	Tons)	
M\$18	33.0	1.22	40.1	2.03	67.0	33	
Type 1-1	17.0	1.41	24.0	2.35	40.0	17	
Type 1-2	27.0	1.22	33.1	2.04	55.2	27	
Type 12-2	38.0	1.30	49.4	2.17	82.4	38	

After confirmation of this sheet, click "NEXT" button then

NEXT

Note				
Reference	Refer to the manual of Rating Examples" page	efer to the manual calculation sheets as shown in the Appendix II "Load ating Examples" page 131 in the Manual for Load Rating of Bridges.		
Verification	Results of calculations	Results of calculations should be verified.		
Input Data	Unnecessary.	Unnecessary.		
Applied Equation	Rating Factor RF	$RF = (\Phi \times Rn - \gamma_{D} \times DL) / (\gamma_{LL} \times (LL + I))$		
in Output	Load Rating LR	LR = RF x (Vehicle Weight)		

Sheet 8 (CCASM): Moment and Shear Capacity Calculations by ASM

E. Load Rating by Allowable Stress Method

E1. MOMENT AND SHEAR CAPACITY CALCULATIONS

E1.1 Input				
Year Built				1958
		fc	Inventory	6.9
	Concrete	ic	Operating	10.3
Material Properties		f	'c	17.2
	Pobar	fr	Inventory	137.9
	Kebu	15	Operating	193.1
Total Assumed Area of Steel As(mm ²)				5542
Centroid of rebars from top of deck , d (mm)				389
Effective width of deck , beff (mm)				1000
Rebar Ratio ρ = As / (beff x d)				
Modular Ratio of Elasticity n = Es / Ec				12
$k = \sqrt{[2pn + (pn)^2]} - pn$			0.4383	
kd			170.5	
j				0.8539
jd				332.2

	E1.2 MOMENT CAPACITY CALCULATIONS			
Moment (kN-m)	Capacity by concrete	Inventory	195.37	
	allowable stress	Operating	291.65	
	Capacity by robar allowable stross	Inventory	253.87	
		Capacity by tebal allowable sitess	Operating	355.49

NEXT

Note			
Reference	Refer to the manual calculation sheets as shown in the Appendix II "Load Rating Examples" page 131, 132 in the Manual for Load Rating of Bridges.		
Verification	Results of calculations should be verified.		
Input Data	Unnecessary.		
		Mc = (Compression zone resultant force "C") x fc x jd	
Applied Equation in Output	Moment Capacity	Ms = As x fs x jd	
		Mu is governing smaller figure either Mc or Ms	

Sheet 9 (LRASM): Load Ratina Calculations by ASM

E2. LOAD RATING CALCULATIONS

E2.1 INPUT			
Load factor for dead load		1.0	
Load factor for live load		1.0	
Moment Capacity at Midspan (kN-m) Inventory Operating		195.37	
		291.65	
Dead Load Moment at Midspan (kN-m)			
Live Load Moment at Midspan (kN-m)		118.46	
Rating Live Load (Tons)			

E2.2. RATING FACTOR CALCULATIONS (ASM) Rating Factor				
Pating Easter and Load Pating	Momont (Midspan)	Inventory Rating	0.67	22.11
Railing Factor and Load Railing	Morneni (Midspan)	Operating Rating	1.49	49.17
	After confirm	a autiona a fulla in alar		NEXT

Note				
Reference	Refer to the manual of Rating Examples" page	efer to the manual calculation sheets as shown in the Appendix II "Load ating Examples" page 132 in the Manual for Load Rating of Bridges.		
Verification	Results of calculations should be verified.			
Input Data	Unnecessary.	Unnecessary.		
Applied Equation	Rating Factor $RF = (R - A1 \times D) / (A2 \times L(1 + I))$			
in Output	Load Rating	LR = RF x 33.0 (Vehicle Wejght)		

Sheet 10 (POSTASM): Load Posting Calculations by ASM F. LOAD POSTING BY ALLOWABLE STRESS METHOD

F1.	INPUT		
Load factor for dead load		1.0	
Load factor for live load		1.0	1
		Moment]
Moment Canacity	Inventory	195.37	1
Momeni Capacity	Operating	291.65	1
Dead Load		115.60	1
		Moment	Vehicle Weight
	MS18	118.46	33.0
Live Load Moment at Midspan (kN-m)	Type 1-1	102.21	17.0
Live Load Shear at Support (KN)	Type 1-2	117.66	27.0
	Type 12-2	110.88	38.0

		F2. LOAD POSTIN	IG RATING FACTO	R CALCULATION	IS (ASM)	
	Vehicle		Mom	ient		Postina
Vehicle Type	Weight (Metric	Invento	ory Rating	Operatir	ng Rating	(Metric
., = =	Tons)	RF	LR	RF	LR	Tons)
M\$18	33.0	0.67	22.2	1.49	49.0	22
Type 1-1	17.0	0.78	13.3	1.72	29.3	13
Type 1-2	27.0	0.68	18.3	1.50	40.4	18
Type 12-2	38.0	0.72	27.3	1.59	60.3	27

		Note
Reference	Refer to the manual of Rating Examples" page	calculation sheets as shown in the Appendix II "Load ge 133 in the Manual for Load Rating of Bridges.
Verification	Results of calculations	s should be verified.
Input Data	Unnecessary.	
Applied Equation	Rating Factor	RF = (R - A1 x D) / (A2 x L (1 + I))
in Output	Load Rating	LR = RF x (Each Posting Vehicle Wejght)

Sheet 11 (POSTSUM) : Summary of Load Posting G. SUMMARY OF LOAD POSTING

	SUMM	ARY OF RE	SULTS FOR	R LOAD PO	OSTING	
	Vehicle	Allowable S	Stress (ASM)	Load Fac	ctor (LFM)	Load
Vehicle Type	Weight (Metric Tons)	Rating Factor	Load Rating	Rating Factor	Load Rating	Posting (Tons)
MS18	33.0	0.67	22.2	1.22	40.1	22T
Type 1-1	17.0	0.78	13.3	1.41	24.0	13T
Type 1-2	27.0	0.68	18.3	1.22	33.1	18T
Type 12-2	38.0	0.72	27.3	1.30	49.4	27T

LOA LIMI	D T
	13T
	18T
	27Т

After confirmation of this sheet, click "BACK TO GENERAL" button then proceed directly to the next screen.

BACK TO GENERAL

	Note
Reference	Refer to the manual calculation sheets as shown in the Appendix II "Load Rating Examples" page 133 in the Manual for Load Rating of Bridges.
Verification	Results of calculations should be verified.
Input Data	Unnecessary.

6.2.2 Continuous RCFS

A. GEN	IERAL						BACK	TO MENU
			A1. BRIDO	GE DESCI	RIPTION			
Bridge Lo	cation	REGION	VII					
Bridge No	me							
Bridge	Simple or Co	ntinuous	C					
Туре	Number of S	ban	3					
Bridge of	Width (curb to	o curb) (m)	7.32					
Number o	of Lanes		2					
Bridge Le	ngth (m)		8.000	8.000	8.000			=24.000m
Year Built			1982					
Structure	Superstructur	re	Reinforcec	d Concrete	Slab			
311001016	Substructure		Wall Type R	RC Piers an	d RC Cantile	ever Abutm	ents	
Wearing	thickness (mr	m)	50					
Course	material		Asphalt					
	roportios		fc=	8.3	Мра	fs=	137.9	Мра
Malenar	ropenies		f'c=	20.7	Мра	fy=	275.8	Мра
			Weight of b	oarrier rail	Wbr =	18.5	KN/m	
Assumptio	n		Concrete I	Unit Weight	Wu =	24.0	KN/m ³	
			Asphalt Un	it Weight W	/a =	22.0	KN/m ³	
Others			Ratina Live	Load is AA	SHTO MS18	(HS20-44)		

Sheet 1 (GENERAL): Input Data of Bridge Description

Material	Year of	Farrer		fc or fs]	After confirmation of this sheet,
Material	Construction	rc or ty	Inventory	Operating	Posting		click "NEXT" button then
	Prior to 1959	17.2	6.9	10.3	6.9		proceed directly to the next
Conorato	after 1959	20.7	8.3	13.1	8.3		
Concrete	1977 to 1981	27.6	11.0	16.5	11.0	*pc	
	after 1981	31.0	12.4	18.6	12.4	*pc	
	Prior to 1954	227.5	124.1	172.4	124.1		*not for Brostromod Conorato
Delegr	after 1954	275.8	137.9	193.1	137.9		pc. Ior Fresiressed Concrete
Repar	Grade 50	344.7	137.9	224.1	137.9	*pc	
	Grade 60	413.7	165.5	248.2	165.5	*pc	

	Note
Input Data	Light blue cells should be filled up.
Differences compared with Simple RCFS	Simple or Continuous, Number of Span and Bridge Length.
Material Properties	It should be taken from GENERAL NOTE in the as built drawings or in the Standard Bridge Design. In case of non-availability of data, It should be taken based on the Bridge Year Built. (refer to Table shown in the above Table)

Sheet 2 (LAYOUT): Input Data of Bridge Layout and Dimension A2. BRIDGE LAYOUT AND DIMENSION

	Note
	Light blue cells should be filled up, these are;
Innut Data	- Girder Dimension : Overall Width
input Data	- Slab Dimension : Width and Thickness
	- Span Length
Differences compared with Simple RCFS	Drawing of Bridge Elevation.
Drawinas	Drawings (Elevation and Cross Section) for the objective bridge should be
· · · · · · · · · · · · · · · · · · ·	prepared as shown in this screen.

Sheet 3 (DFDLLL): Demand Forces Calculations **B. DEMAND FORCES**

	BO. INPUT	
FOR	Slab width bw(m)	8.540
DEAD	Slab thickness h (m)	0.450
LOAD	Span Length L(m)	8.000

В	1. DEAD LO	DAD CALC	CULATIONS			
		Self-weigh	t of Slab			10.800
Uniformal a stal is an incator of Circles	(K) (ma)	Barrier Rail				2.708
Uniform Load per meter of Girder	(KN/M)	Asphalt Ov	verlay			0.943
			Toto	al		14.450
		Moment (K	N-m/m)	M	DL	115.60
Dead Load		Shear (KN)		V	DL.	57.80
B2. LOAD D	EMAND M	IDSPAN A	ND SUPPOI	rt of RC	S	
Conducting a Structure obtained separately and	al Analysis input the r	, the load necessary	demands load dem	for the R ands in t	CS shoul he Table	d be below.
Conducting a Structure obtained separately and LIVE-LOAD Type	I Analysis input the r MS18(HS20)	, the load necessary	demands load dem	for the R(ands in t	CS shoul he Table	d be below.
Conducting a Structure obtained separately and LIVE-LOAD Type Number of live load wheel line	al Analysis, input the r MS18(HS20) 0.589	, the load	demands load dem	for the R ands in t	CS shoul he Table	d be below.
Conducting a Structure obtained separately and LIVE-LOAD Type Number of live load wheel line Impact factor	al Analysis, input the r MS18(HS20) 0.589 0.300	, the load hecessary INPUT FC	demands load dem DR LIVE LOA	for the Ro ands in t D	CS shoul he Table	d be below.
Conducting a Structure obtained separately and LIVE-LOAD Type Number of live load wheel line Impact factor span	al Analysis, input the r MS18(HS20) 0.589 0.300 8.000	, the load hecessary INPUT FC	demands load dem DR LIVE LOA	for the R ands in t D	CS shoul he Table	d be below.
Conducting a Structure obtained separately and LIVE-LOAD Type Number of live load wheel line Impact factor span Description	al Analysis, input the r MS18(HS20) 0.589 0.300 8.000	, the load hecessary INPUT FC	demands load dem DR LIVE LOA	for the R ands in t D	CS shoul he Table At Pier	d be below.
Conducting a Structure obtained separately and LIVE-LOAD Type Number of live load wheel line Impact factor span Description Description Dead load moments, KN-m	al Analysis, input the r MS18(HS20) 0.589 0.300 8.000	, the load Decessary INPUT FC	demands load dem DR LIVE LOA At Mids 115.0	for the R ands in t D pan	CS shoul he Table At Pier -6	d be below.
Conducting a Structure obtained separately and LIVE-LOAD Type Number of live load wheel line Impact factor span Description Dead load moments, KN-m Additional Dead load moments, K	al Analysis, input the r MS18(HS20) 0.589 0.300 8.000	, the load necessary INPUT FC	demands load dem DR LIVE LOA At Mids 115.0 7.65	for the R ands in t D pan 50	CS shoul he Table At Pier -6	d be below. <i>s</i> Support 6.30 7.45
Conducting a Structure obtained separately and LIVE-LOAD Type Number of live load wheel line Impact factor span Description Dead load moments, KN-m Additional Dead load moments, K MS18 max, positive moment, KN-m	al Analysis, input the r MS18(HS20) 0.589 0.300 8.000	, the load hecessary INPUT FC	demands load dem DR LIVE LOA At Mids 115. 7.6 152.	for the R ands in t D pan 50	CS shoul he Table At Pier -6 -7	d be below.

After confirmation of this sheet, click "NEXT" button then proceed directly to the next

NEXT

		Note	
Reference	Refer to the manual calculation sheets as shown in the Appendix II "Load Rating Examples" page 146 in the Manual for Load Rating of Bridges.		
Verification	Results of calculations should be verified.		
Input Data	Load Demands on continuous bridge should be given.		
Differences compared with Simple RCFS	Load demands should be separately analized with appropriate structural Model.		
Slab Width	Slab Width for Load Rating Calculations is applied 1m width.		
Applied Equation in Output		Uniform Load W _{DL}	= A x W
	Dead	M _{DL}	$= 1/8 \times W_{DL} \times L^2$
	LOUG	V _{DI}	$= 1/2 \times W_{DI} \times L$

Sheet 4 (CCLFM): Capacity Calculations for Moment at Midspan and Shear at Support C. LOAD RATING BY LOAD FACTOR METHOD (LFM)

1.00m Segment			
	Total	area of Re	bar
↑		Midspan	At Pier
for Pier	Nos of Rebar	10	6.7
0.45	Dia. (mm)	28	28
	As(mm2)	6158	4126
	yb (mm)	61	64
10nos28 mm 🖉			
TYPICAL SLAB for Midspan			
C1. CAPACITY CALCULATIONS			

C1. INPUT					
(1) Common Input Data				At Midspan	At Pier
	Concrete	Allowable Stress	fc	8.3	
Material Properties (Mpa)	Concrete	Strength	f'c	20.7	
	Rebar	Allowable Stress	fs	137	.9
		Strength	fy	275.8	
(2) Input Data for Moment Capacity				At Midspan	At Pier
Total Area of Steel As	(mm²)	10 x (28mm rebar)		6158	4126
Section Loss (%)				0	0
Total Assumed Area o	6158	4126			
Centroid of rebars from bottom of deck , d (mm)				61	64
Centroid of rebars from top of deck , d (mm)				389	386
Effective width of deck , b _{eff} (mm)				1000	1000
Ultimate capacity factor (Uf) 0.90 0.				0.90	

C1. MOMENT CAPACITY AT MID	At Midspan	At Pier		
Rectangular stress block depth a (mm)		97.0	65.0	
The Moment Capacity Mu (kN-m)		520.4	362.0	
				NEXT
	After confirmation	of this she	et,	

click "NEXT" button then proceed directly to the next

Note				
Reference	Refer to the manual calculation sheets as shown in the Appendix II "Load Rating Examples" page 146, 147 in the Manual for Load Rating of Bridges.			
Verification	Results of calculations should be verified.			
	Light blue cells should be filled up, these are;			
Input Data	Rebar	Main Reinforcements Schedule		
	Damage Evaluation	Secton Losses due to Rebar exposure caused by Moment		
Differences compared with Simple RCFS	Rebar schedule at Pier should be added.			
Drawings	Drawings (Rebar Schedule) for the objective bridge should be prepared as shown in this screen.			
Applied Equation in Output	Ultimate Moment Capacity M _u	$M_{U} = Uf x As' x fy x (d - a)$ where, a = (As' x fy) / (0.85 x f'c x beff)		
Sheet 5 (LRLFM): Load Rating Calculations

C2. LOAD RATING CALCULATIONS

C2.	At Midspan At Pie			
Load factor for dead load	1.3			
Load factor for live load	Inventory	2.1	7	
Lodd Idciol for live lodd	Operating	1.3		
Moment Ultimate Capacity at I	520.43	-362.00		
Dead Load Moment at Midspan (kN-m)		123.25	-73.75	
Live Load Moment at Midspan (kN-m)		152.50	-109.10	
Rating Live Load (Tons)		33.0	33.0	

C2.2 CALCULATIONS OF F	C2.2 CALCULATIONS OF RATING FACTOR AND LOAD RATING					Load Rating	
Rating Factor and Load Rating		Midspap	Inventory Rat	ting	1.09	35.97	
	Moment	Miaspan	Operating Ra	iting	1.82	60.06	
	Moment	At Pior	Inventory Rat	ting	1.12	36.96	
		ALLIE	Operating Ra	iting	1.88	62.04	
	Depend on the minimum value of Rating Factor > 1 or <1 , instruction in the below cell is automatically shown Return to GENERAL Click following the above instruction						
	Return to GENERAL			Accol GEI pro	rding to screer a gray co NERAL" c ceed dir	the Instru n, User ha ploured or "LOAE rectly to	uction shown in this ave to click cell "Return to D POSTING", then the next screen.

Note					
Reference	Refer to the manual calculation sheets as shown in the Appendix II "Load Rating Examples" page 148 in the Manual for Load Rating of Bridges.				
Verification	Results of calculations should be verified.				
Input Data	Unnecessary.				
Differences compared with Simple RCFS	Load Rating calculations should be done not only at Midspan but also at Pier.				
Applied Equation	Rating Factor RF	$RF = (\Phi \times Rn - \gamma_{D} \times DL) / (\gamma_{LL} \times (LL + I))$			
in Output	Load Rating LR	LR = RF x (Vehicle Weight)			

Sheet 6 (POSTLL) : Demand Forces Calculations for Load Posting Vehicles D. LOAD POSTING BY LOAD FACTOR METHOD (LFM)

D1.2 POSTING VEHICLE DEMAND FORCES Conducting a Structural Analysis, the load demands for the RCS should be obtained separately and input the necessary load demands in the Table below.						
Posting Vehicle	Demand Forces	At Midspan	At Pier Support			
Turnell	Moment	105.2	-83.9			
Type 1-1	Shear	-	-23.1			
Type 1-2	Moment	137.7	-109.2			
	Shear	-	-31.2			
Туре 12-2	Moment	142.8	-115.9			
	Shear	-	-30.4			

D1. DEMAND FORCES FOR LOAD POSTING VEHICLES

Note					
Reference	Refer to the manual calculation sheets as shown in the Appendix II "Load Rating Examples" page 149 in the Manual for Load Rating of Bridges.				
Verification	Results of calculations should be verified.				
Input Data	Load Demands loaded on continuous bridge should be given.				
Differences compared	Load Rating calculations should be done not only at Midspan but also at Pier				
with Simple RCFS	Load demands should be separately analized with appropriate structural Model.				

Sheet 7 (POSTLFM): Posting Rating Calculations

D2. POSTING RATING CALCULATIONS

D2.1 INPUT							
Load factor for dead load			1	1.3			
Load factor for live load	Inve	Inventory		17			
Eodd Idciol for live lodd	Ope	erating	1.3				
	Midspan	At Pier					
Moment Ultimate Capacity	520.43	362.00					
Dead Load	123.25	-73.75					
			Midspan	At Pier	Vehicle Weight		
	152.50	-109.10	33.0				
Live Load Moment at Midspan (kN-m) Type 1-1			105.20	-83.90	17.0		
Live Load Shear at Support (KN)		Type 1-2	137.70	-109.20	27.0		
	Type 12-2	142.80	-115.90	38.0			

	D2	2.2 LOAD POSTIN	IG RATING FACTO	OR CALCULATIO	NS BY LFM	
	Vehicle Invento		ry Rating	Operatir	ng Rating	Posting
Vehicle Type	Weight (Metric	Mo	ment	Mor	ment	(Metric
1)[00	Tons)	RF	LR	RF	LR	Tons)
(1) AT N	IDSPAN					
MS18	33.0	1.09	35.9	1.82	60.0	33
Type 1-1	17.0	1.58	26.8	2.63	44.8	17
Type 1-2	27.0	1.21	32.5	2.01	54.3	27
Type 12-2	38.0	1.16	44.2	1.94	73.7	38
(2) AT P	IER					
M\$18	33.0	1.12	37.1	1.88	61.9	33
Type 1-1	17.0	1.46	24.8	2.44	41.5	17
Type 1-2	27.0	1.12	30.3	1.87	50.6	27
Type 12-2	38.0	1.06	40.2	1.77	67.1	38

	Note					
Reference	Refer to the manual calculation sheets as shown in the Appendix II "Load Rating Examples" page 149 in the Manual for Load Rating of Bridges.					
Verification	Results of calculations should be verified.					
Input Data	Unnecessary.					
Differences compared with Simple RCFS	Load Rating calculations should be done not only at Midspan but also at Pier					
Applied Equation Rating Factor RF RF = $(\Phi \times Rn - \gamma_D \times DL) / (\gamma_{LL} \times (LL + I))$						
in Output	Load Rating LR	LR = RF x (Vehicle Weight)				

Sheet 8 (CCASM): Moment and Shear Capacity Calculations by ASM

E. Load Rating by Allowable Stress Method

E1. MOMENT AND SHEAR CAPACITY CALCULATIONS

E1.1 Input					At Midspan At Pier	
Year Built					1982	
	Concrete		fo		8.3	
				Operating	13.	3.1
Material Properties			f	с	20.	.7
	Pebar	ar	fs	Inventory	137	'.9
			15	Operating	193	3.1
Total Assumed Area of S	iteel As(mm	8 x	(28mm reb	oar)	6158	4126
Centroid of rebars from	top of deck ,	d (mm)			389	386
Effective width of deck	, beff (mm)				1000	1000
Rebar Ratio ρ = As / (beff x d)					0.01583	0.01069
Modular Ratio of Elastic	ity n = Es / Ec				12	12
$k = \sqrt{[2\rho n + (\rho n)^2]} - \rho n$					0.4550	0.3942
kd					177.0	152.2
j					0.8483	0.8686
jd					330.0	335.3
E1.2 MOME	NT CAPACI	TY CALC	ULATION	5	At Midspan	At Pier
	/ concrete)	Inventory	242.40	211.72	
Moment (kNLm)	allowable stress			Operating	382.59	334.16
Moment (KN-III)	Capacity by robar allowable strong			Inventory	280.21	190.74
	Operating				392.38	267.10
After confirmation of this sheet.						

click "NEXT" button then proceed directly to the next

Note					
Reference	Refer to the manual calculation sheets as shown in the Appendix II "Load Rating Examples" page 150, 151, 152 in the Manual for Load Rating of Bridges.				
Verification	Results of calculations should be verified.				
Input Data	Unnecessary.				
Differences compared with Simple RCFS	Load Rating calculations should be done not only at Midspan but also at Pier				
		Mc = (Compression zone resultant force "C") x fc x jd			
Applied Equation in Output	Moment Capacity	Ms = As x fs x jd			
		Mu is governing smaller figure either Mc or Ms			

Sheet 9 (LRASM): Load Rating Calculations by ASM

E2. LOAD RATING CALCULATIONS

E2.1 INPUT	At Midspan	At Pier	
Load factor for dead load			0
Load factor for live load		1.	0
Moment Canacity at Midanan (K) m	Inventory	242.40	190.74
Moment Capacity at Midspart (kin-m)	Operating	382.59	267.10
Dead Load Moment at Midspan (kN-m)		123.25	-73.75
Live Load Moment at Midspan (kN-m)	152.50	-109.10	
Rating Live Load (Tons)	33	.0	

E2.2. RATING FACTOR CALCULATIONS (ASM)					Load Rating	
Rating Factor and Load Rating	Moment ()	Midenan	Inventory Rating	0.78	25.74	
		Midspari	Operating Rating	1.70	56.10	
		At Pier	Inventory Rating	1.07	35.31	
			Operating Rating	1.77	58.41	
After confirmation of this sheet,				et,	NEXT	

Note						
Reference	Refer to the manual calculation sheets as shown in the Appendix II "Load Rating Examples" page 152 in the Manual for Load Rating of Bridges.					
Verification	Results of calculations	Results of calculations should be verified.				
Input Data	Unnecessary.					
Differences compared with Simple RCFS	Load Rating calculations should be done not only at Midspan but also at Pier					
Applied Equation	Rating Factor	RF = (R - A1 x D) / (A2 x L (1 + I))				
in Output	Load Rating	LR = RF x (Vehicle Wejght)				

Sheet 10 (POSTASM) : Load Posting Calculations by ASM

F. LOAD POSTING BY ALLOWABLE STRESS METHOD

F1. INPUT							
Load factor for dead load		1	.0				
Load factor for live load		1	.0				
		Mor	nent				
		Midspan	At Pier				
Momont Canacity	Inventory	242.40	-190.74				
Moment Capacity	Operating	382.59	-267.10				
Dead Load		123.25	-73.75				
		Mor	Vehicle				
		Midspan	At Pier	Weight			
	MS18	152.50	-109.10	33.0			
Live Load Moment at Midspan (kN-m)	Type 1-1	105.20	-83.90	17.0			
Live Load Shear at Support (KN)	Type 1-2	137.70	-109.20	27.0			
	Type 12-2	142.80	-115.90	38.0			

	F2. LOAD POSTING RATING FACTOR CALCULATIONS (ASM)							
	Vehicle	Moment						
Vehicle Type	Weight (Metric	Invento	ory Rating	Operatir	ng Rating	(Metric		
. 71	Tons)	RF	LR	RF	LR	Tons)		
(1) AT N	IDSPAN							
MS18	33.0	0.78	25.8	1.70	56.1	26		
Type 1-1	17.0	1.13	19.3	2.47	41.9	17		
Type 1-2	27.0	0.87	23.4	1.88	50.9	23		
Туре 12-2	38.0	0.83	31.7	1.82	69.0	32		
(2) AT P	IER							
MS18	33.0	1.07	35.4	1.77	58.5	33		
Type 1-1	17.0	1.39	23.7	2.30	39.2	17		
Type 1-2	27.0	1.07	28.9	1.77	47.8	27		
Type 12-2	38.0	1.01	38.4	1.67	63.4	38		

After confirmation of this sheet, click "NEXT" button then proceed directly to the next

Note						
Reference	Refer to the manual calculation sheets as shown in the Appendix II "Load Rating Examples" page 153 in the Manual for Load Rating of Bridges.					
Verification	Results of calculations should be verified.					
Input Data	Unnecessary.					
Differences compared with Simple RCFS	Load Rating calculations should be done not only at Midspan but also at Pier					
Applied Equation	Rating Factor	RF = (R - A1 x D) / (A2 x L (1 + I))				
in Output	Load Rating	LR = RF x (Each Posting Vehicle Wejght)				

Sheet 11 (POSTSUM) :	Summary of Load Posting
G. SUMMARY OF RESULTS FOR LOAI	D POSTING

	SUMMARY OF RESULTS FOR LOAD POSTING								
Vehicle Type	Vehicle	Vehicle Allowable Stress (ASM)		Load Fac	Load				
	Weight (Metric Tons)	Rating Factor	Load Rating	Rating Factor	Load Rating	Posting (Tons)			
MS18	33.0	0.78	25.8	1.09	35.9	26T			
Type 1-1	17.0	1.13	19.3	1.46	24.8	171			
Type 1-2	27.0	0.87	23.4	1.12	30.3	23T			
Type 12-2	38.0	0.83	31.7	1.06	40.2	32T			

After confirmation of this sheet, click "BACK TO GENERAL" button then proceed directly to the next screen.

BACK TO GENERAL

Note					
Reference Refer to the manual calculation sheets as shown in the Appendix II "Load Rating Examples" page 154 in the Manual for Load Rating of Bridges.					
Verification	Results of calculations should be verified.				
Input Data	Unnecessary.				

6.3 RCDG (Reinforced Concrete Deck Girder Bridge)

6.3.1 Simple RCDG

INTERIOR RCDG SIMPLE										
A. GEN	IERAL						[BACK	TO MENU	
			A1. BRID	GE DESCR	IPTION					
Bridge Loc	cation	REGION	XI							
Bridge Na	me		Sample Bri	dge						
Bridge	Simple or Cor	ntinuous	S	Reinforced	Concrete	T-bear	ms			
Туре	Number of Sp	an	1							
Bridge of \	Width (curb to	curb) (m)	7.32							
Number o	f Lanes		2							
Bridge Ler	ngth (m)		10.400						=10.400m	
rear Built	Nes of Circle		1987	Multiple	notholic	ith d-	ok alc'h			
Structure	Girder Space	r og (m)	4		momolic w	an dea	CK SIDE			
311001018	Substructure	ig (m)	Concrete	bents and A	butments					
Wearing	thickness (mr	n)	50		Donnor 113					
Course material			Asphalt	1						
maionai		fc=	8.3	Мра		fs=	137.9	Mpg		
Material P	roperfies		f'c=	20.7	Мра		fy=	275.8	Мра	
			Weight of	barrier rail V	Nbr =	3.	.6	KN/m		
Assumptio	n		Concrete	Unit Weight	Wu =	24	1.0	KN/m ³		
			Asphalt Ur	Asphalt Unit Weight Wa =			2.0	KN/m ³		
Others			Rating Live	e Load is AA	SHTO MS18	(HS20-	-44)			
Material	Year of	foorfu		fc or fs]	Δ.F	tor oor	NEXT	cof this shoe
marenal	Construction	1 C OF TY	Inventory	Operating	Posting					I OF THIS SHEE
	Prior to 1959	17.2	6.9	10.3	6.9			CliCk	"NEXI" b	utton then
Concrete	after 1959	20.7	8.3	13.1	8.3		F	procee	d directl	y to the next
CONCIERE	1977 to 1981	27.6	11.0	16.5	11.0	*pc	L			
	after 1981	31.0	12.4	18.6	12.4	*pc				
	Prior to 1954	227.5	124.1	172.4	124.1	1 1	ىپ		Deseter	
Dele	after 1954	275.8	137.9	193.1	137.9	1	L *r	pc: for	Prestress	ea Concrete
	Grade 50	344.7	137.9	224.1	137.9	*pc				
Rebar										

Sheet 1 (GENERAL): Input Data of Bridge Description

Note						
Input Data	Light blue cells should be filled up.					
Material Properties	It should be taken from GENERAL NOTE in the as built drawings or in the Standard Bridge Design. In case of non-availability of data, It should be taken based on the Bridge Year Built. (refer to Table shown in the above Table)					

Sheet 2 (LAYOUT) : Input Data of Bridge Layout and Dimension

A2. BRIDGE LAYOUT AND DIMENSION

Note						
	Light blue cells should be filled up, these are;					
Input Data	- Girder Dimension : Width and Web Height					
	- Slab Dimension : Fillet/Hunch Width and Height, and Slab Thickness					
	- Span Length					
Drawings	Drawings (Elevation and Cross Section) for the objective bridge should be prepared as shown in this screen.					

Sheet 3 (DFDLLL): Demand Forces Calculations

B. DEMAND FORCES

	BO. INPUT					
	Girder width bw(m)	0.400				
FOR	Girder Web height h (m)	0.600				
	Fillet/Haunch width wf(m)	0.100				
DEAD	DEAD Fillet/Haunch height hf(m)					
LOAD	Slab thickness ts (m)	0.180				
	Slab width ws (m)	2.400				
	Span Length L(m)	10.400				

B1. DEAD LOAD CALCULATIONS							
	Self-weight of Girder		5.760				
	Fillet/Haunch		0.240				
Uniform Load per meter of Girder (KN/m)	Slab Weight	Continuous	10.368				
	Barrier Rail	1.800					
	Asphalt Overlay	2.640					
	To	20.810					
Deadlaad	Moment (KN-m/m)	M _{DL}	281.4				
Dedd Lodd	Shear (KN)	V _{DL}	108.2				

B2. LIVE-LOAD CALCULATIONS							
LIVE-LOAD Type	MS18(HS20)						
Number of live load wheel line	1.312						
Impact factor	0.300	INPUT FOR LIVE LOAD					
span	10.400	1					
Max MS18 moment for 10,40m spar		without Impact	ML	236.5			
Max.ms18 moment for 10.40m spar	1/wheeline	with Impact	M _{LL}	403.5			
Max.MS18 shear at a distance "d"		without Impact	VL	117.7			
from the support/wheel line		with Impact	V _{LL}	200.7			

NEXT

Note							
Reference	Refer to th Rating Exa	efer to the manual calculation sheets as shown in the Appendix II "Load ating Examples" page 168 in the Manual for Load Rating of Bridges.					
Verification	Results of a	Results of calculations should be verified.					
Input Data	Unnecesso	Innecessary.					
Live Logd Forces	They are calculated based on the Load Rating Manual Appendix III						
Live Loda Forces	(refer to Table shown in the next pages of this Sheet 3)						
	Dead Load	Uniform Load W _{DL}	= A x W				
		M _{DL}	$= 1/8 \times W_{DL} \times L^2$				
		V _{DL}	$= 1/2 \times W_{DL} \times L$				
Applied Equation		ML	Refer to Load Rating Manual Appendix III				
	Live	MLL	= ML x D.F x Impact				
	Load	VL	Refer to Load Rating Manual Appendix III				
		VLL	= ML x D.F x Impact				

Sheet 4 (CCLFM): Capacity Calculations for Moment at Midspan and Shear at Support

-		2400		. ,		
			Ţ	Toto	al area of Re	ebar
				Nos of	Rebar	8
400 •		• / 9		Dia.	mm)	28
180 L		As(m	nm2)	4926		
	Stimup d 12	vb (mm)	102		
600		/~ (102		
					Stirrups	
•				Dia.	mm)	12
	•	450		As(n	nm2)	113.1
				Spacin	g (mm)	200
		D SLAD DETAILS		·		
		INDUT				
(1) Common Innu	UI.	INFUI				
		Allowable Stress	fc	83		
Material Properties	Concrete /	Strength	fc	20.7		
(Mpa)	/	Allowable Stress	fs	137.9		
	Rebar	Strength	fy	275.8		
(2) Input Data for	Moment Cap	acity	,			
Total Area of Steel As	(mm ²)			4926		
Section Loss due to Re	ebar Exposure (%	5)		0		
Total Assumed Area o	of Steel As(mm2)			4926		
Centroid of rebars fro	m bottom of dea	ck , d (mm)		102		
Centroid of rebars fro	m top of deck , a	d (mm)		678		
12ts + bw				2560		
Effective width of dec	sk , b _{eff} (mm	Span Length /	4	2600		
	1 0.0	beff		2400		
Ultimate capacity fac	Stor (UT)	11. <i>.</i>		0.90		
(3) Input Data for	snear Capac	пу		400		
Girder width bw(mm	1)			400		
Depth of Shear Crack	(s (mm)			199		
The Reduction Factor	aue to Shear Cr	acks		0.50		
Centroid of rebars fro	m top of deck , (a (mm)		6/8		
Area of rebar Av(mm	²)			113.1		
Section Loss due to St	irrups Exposure (S	%)		0		
Total Assumed Area o	f Steel As(mm2)			113.1		
Spacing of stirrups S (mm)			200		
Ultimate capacity fac	tor (Uf)			0.85		
	C1.1 M	OMENT CAPACI	TY AT MI	DSPAN		
Rectangular stress blo	ock depth a (mm	1)				32.2
The Moment Capacit	y Mu (kN-m)					809.3
	C1.2 S	SHEAR CAPACIT	Y AT SUP	PORT		
The shear FULL capac	ity due to concr	ete section Vc (kN)			206.1
The shear capacity due to concrete section Vc (kN)						103.5
The shear FULL capacity due to shear reinforcement Vs (kN)						211.5
The shear capacity due to Stirrups Vs (kN)						211.5
The total shear capacity Vu (kN)						267.8
		After earf	irmation	o of this al		NEXT
				TOT IT IS SI		
		Click "	NEXI" D	utton the	n l	
		proceed	l directl	y to the n	ext	

C. LOAD RATING BY LOAD FACTOR METHOD (LFM)

		Note				
Reference	Refer to the manual c Rating Examples" pag	Refer to the manual calculation sheets as shown in the Appendix II "Load Rating Examples" page 169, 170 in the Manual for Load Rating of Bridges.				
Verification	Results of calculations	s should be verified.				
	Light blue cells should	be filled up, these are;				
	Pobar	Main Reinforcements Schedule				
Innut Data	KEDUI	Stirrups Schedule				
		Secton Losses due to Rebar exposure caused by Moment				
	Damage Evaluation	Depth of Shear Cracks				
		Secton Losses due to Stirrups exposure caused by Shear				
Drawings	Drawings (Rebar Sche as shown in this screer	adule) for the objective bridge should be prepared n.				
	Ultimate Moment	$M_{ij} = Uf x As' x fy x (d - a)$				
Applied Equation in Output		where, $d = (AS X V) / (0.65 X V C X Dell)$ VII = $\Phi x (VC + VS)$				
	Ultimate Shear Capacity V _U	where, $Vc = 0.167 \times Sqrt (f'c) \times b \times d$ $Vs = 2 \times Av' \times fy \times deff / S$				

Sheet 5 (LRLFM) : Load Rating Calculations

C2. LOAD RATING CALCULATIONS

C2.1 INPUT					
Load factor for dead load		1.3			
Load faster for live load	Inventory	2.17			
Load factor for live load Operating		1.3			
Moment Ultimate Capacity at Mi	809.3				
Dead Load Moment at Midspan	281.4				
Live Load Moment at Midspan (k	403.5				
Shear Ultimate Capacity at Supp	267.8				
Dead Load Shear at Support (KN)	108.2				
Live Load Shear at Support (KN)	200.7				
Rating Live Load (Tons)		33.0			

Note					
Reference	Refer to the manual of Rating Examples" page	efer to the manual calculation sheets as shown in the Appendix II "Load ating Examples" page 170, 171 in the Manual for Load Rating of Bridges.			
Verification	Results of calculations	Results of calculations should be verified.			
Input Data	Unnecessary.				
Applied Equation	Rating Factor RF	$RF = (\Phi \times Rn - \gamma_{D} \times DL) / (\gamma_{LL} \times (LL + I))$			
in Output	Load Rating LR	LR = RF x (Vehicle Weight)			

Sheet 6 (POSTLL) : Demand Forces Calculations for Load Posting Vehicles (Type 1-1, Type 1-2 and Type 12-2)

D. LOAD POSTING BY LOAD FACTOR METHOD (LFM)

D1. DEMAND FORCES FOR LOAD POSTING VEHICLES

D1.1 DEMAND FORCES FOR LOAD POSTING VEHICLES							
(1) POSTING VEHICLE Type	1-1						
LIVE-LOAD Type	Type1-1						
Number of live load wheel line	1.312	1					
Impact factor	0.300	1					
span	10.40	1					
T		without Impact	ML	183.0			
Type 1-1 moment for 10.40m span	/wneel line	with Impact	MLL	312.1			
Type 1-1 shear at a distance "d"		without Impact	VL	76.7			
from the support/wheel line		with Impact	VLL	130.8			
(2) POSTING VEHICLE Type	1-2						
LIVE-LOAD Type	Type1-2						
		without Impact	ML	223.6			
Type 1-2 moment for 10.40m span	/wheel line	with Impact	ML	381.4			
Type 1-2 shear at a distance "d"		without Impact	VL	103.6			
from the support/wheel line		with Impact	VLL	176.7			
(3) POSTING VEHICLE Type	12-2						
LIVE-LOAD Type	Type12-2						
		without Impact	ML	208.6			
Type 12-2 moment for 10.40m span	/wheel line	with Impact	Mil	355.8			
Type 12-2 shear at a distance "d"		without Impact	VL	90.1			
from the support/wheel line		with Impact	VII	153.7			
				1000			
				NEXT			
	Afte	er confirmation o	of this sheet,	NEXT			
		click "NEXT" button then					
	proceed directly to the next						

Note					
Reference	Refer to th Rating Exa	Refer to the manual calculation sheets as shown in the Appendix II "Load Rating Examples" page 171 in the Manual for Load Rating of Bridges.			
Verification	Results of c	Results of calculations should be verified.			
Input Data	Unnecesso	Jnnecessary any input data.			
Posting Live Load	e Load Rating Manual Appendix III.				
Forces	(refer to Table shown in the next pages of this Sheet 6)				
		ML	Refer to Load Rating Manual Appendix III		
Applied Equation	Posting	MLL	= ML x D.F x Impact		
in Output	Load	VL	Refer to Load Rating Manual Appendix III		
		VLL	= ML x D.F x Impact		

Sheet 7 (POSTLFM): Posting Rating Calculations

D2. POSTING RATING CALCULATIONS

D2.1 INPUT						
Load factor for dead load			1.3			
Load factor for live load	Inve	Inventory				
Lodd Idciol for live lodd	Ope	erating	1.3			
			Moment	Shear		
Moment Ultimate Capacity			809.3	267.8		
Dead Load			281.4	108.2		
			Moment	Shear	Vehicle Weight	
MS18			403.5	200.7	33.0	
Live Load Moment at Midspa	Type 1-1	312.1	130.8	17.0		
Live Load Shear at Support (KN)		Type 1-2	381.4	176.7	27.0	
		Type 12-2	355.8	153.7	38.0	

D2.2 LOAD POSTING RATING FACTOR CALCULATIONS BY LFM										
	Vehicle		Invento	ory Rating		Operating Rating				Posting
Vehicle Type	Weight (Metric	Mor	nent	She	ear	Mor	nent	Sh	ear	(Metric
.,,==	Tons)	RF	LR	RF	LR	RF	LR	RF	LR	Tons)
M\$18	33.0	0.51	16.7	0.29	9.6	0.85	27.9	0.49	16.1	10
Type 1-1	17.0	0.65	11.1	0.45	7.6	1.09	18.6	0.75	12.7	8
Type 1-2	27.0	0.54	14.5	0.33	8.9	0.89	24.2	0.55	14.9	9
Type 12-2	38.0	0.57	21.8	0.38	14.5	0.96	36.4	0.64	24.2	14

Note						
Reference	Refer to the manual of Rating Examples" page	efer to the manual calculation sheets as shown in the Appendix II "Load ating Examples" page 171 in the Manual for Load Rating of Bridges.				
Verification	Results of calculations should be verified.					
Input Data	Unnecessary.					
Applied Equation	Rating Factor RF	$RF = (\Phi \times Rn - \gamma_{D} \times DL) / (\gamma_{LL} \times (LL + I))$				
in Output	Load Rating LR	LR = RF x (Vehicle Weight)				

Sheet 8 (CCASM) : Moment and Shear Capacity Calculations by ASM E. Load Rating by Allowable Stress Method

E1. MOMENT AND SHEAR CAPACITY CALCULATIONS

E1.1 Input							
		fc	Inventory	8.3			
	Concrete	ic	Operating	13.1			
Material Properties		f	'c	20.7			
	Pebar	fe	Inventory	137.9			
	Kebdi	13	Operating	193.1			
Total Assumed Area of S	Total Assumed Area of Steel As(mm ²)						
Area of rebar Av(mm ²)				113.1			
Spacing of stirrups S (m	m)			200			
Centroid of rebars from top of deck , d (mm)							
Effective width of deck , beff (mm)							
Girder width bw(m)				400			
Rebar Ratio ρ = As / (b	eff x d)			0.00303			
Modular Ratio of Elastici	ity n = Es / Ec			12			
k = √ [2pn + (pn) ²] - p	n			0.2357			
j				0.9214			
kd				159.8			
Slab thickness ts (mm)							
k							
Z				53.26			
jd				624.74			

Calculation of kd						
n	As	d	b	ts	bw	
12	4926	678	2400	180.0	400	
nAs	nAsd	bts	1/2bts ²	bwy	y/2+ts	
59112	40077936	432000	38880000	0	180.0	
ts+y	Ycalculate				Yinput	
180.0	0.0				0.0	

E1. MOMENT AND SHEAR CAPACITY CALCULATIONS						
	Capacity	Inventory	994.18			
Moment (kN-m)	by concrete allowable	e stress Mc	Operating	1569.13		
	Capacity	Inventory	424.38			
	by rebar allowable stre	Operating	594.26			
	Capacity due to	Ma	Inventory	49.60		
	concrete section	VC	Operating	74.40		
Shoar (kbl)	Capacity	Ve	Inventory	105.74		
Shear (kiv)	due to rebar	V 5	Operating	148.07		
	Shear eangeity	14.	Inventory	155.34		
	sneur capacity	v0	Operating	222.47		

NEXT

	Note					
Reference	Refer to the manual calculation sheets as shown in the Appendix II "Load Rating Examples" page 172, 173, 174 in the Manual for Load Rating of Bridges.					
Verification	Results of calculations	Results of calculations should be verified.				
	Only Allowable Stress	of Rebar should be given.				
Input Data	Yinput should be given as same value with Ycalculate. By giving an initial value of Yinput, then User can get a value of Ycalculate. Repeating to apply Ycalculate as a Yinput, Yinput as same value with Ycalculate will be taken. In case Y is within slab thickness, Ycalculate and Yinput will be equal to zero (0).					
		Mc = (Compression zone resultant force "C") x fc x jd				
	Moment Capacity	Ms = As x fs x jd				
Applied Equation		Mu is governing smaller figure either Mc or Ms				
in Output		$Vc = 0.08 \times Sqrt (f'c) \times bw \times d (for Inventory)$				
-	Shear Capacity	$Vc = 0.12 \times Sqrt (f'c) \times bw \times d (for Operating)$				
	Shear Capacity	$Vs = (2 \times Av \times fs \times ds) / S$				
		$V_U = V_C + V_S$				

Sheet 9 (LRASM) : Load Rating Calculations by ASM

E2. LOAD RATING CALCULATIONS

E2.1 INPUT				
Load factor for dead load		1.0		
Load factor for live load		1.0		
Moment Canacity at Midenan (khi m)	Inventory	424.4		
Operating				
Dead Load Moment at Midspan (kN-m)				
Live Load Moment at Midspan (kN-m)		403.5		
Shoar Canacity at Support (KNI)	Inventory	155.3		
Shedr Capacity of Sopport (KN)	Operating	222.5		
Dead Load Shear at Support (KN)				
Live Load Shear at Support (KN)		200.7		
Rating Live Load (Tons)		33.0		

E2.2. RATING FAC	Rating Factor	Load Rating		
	Moment (Midshan)	Inventory Rating	0.35	11.7
Pating Easter and Load Pating	Momeni (Midspan)	Operating Rating	0.78	25.6
Kalling racior and Load Kalling	Shoar (At Support)	Inventory Rating	0.23	7.7
	snedr (Ar support)	Operating Rating	0.57	18.8
	eet.	NEXT		

After confirmation of this sheet,	NE
click "NEXT" button then	
proceed directly to the next	

Note						
Reference	Refer to the manual of Rating Examples" page	refer to the manual calculation sheets as shown in the Appendix II "Load Pating Examples" page 174 in the Manual for Load Rating of Bridges.				
Verification	Results of calculations	Results of calculations should be verified.				
Input Data	Unnecessary.	Unnecessary.				
Applied Equation	Rating Factor	RF = (R - A1 x D) / (A2 x L (1 + I))				
in Output	Load Rating	LR = RF x 33.0 (Vehicle Wejght)				

Sheet 10 (POSTASM): Load Posting Calculations by ASM F. LOAD POSTING BY ALLOWABLE STRESS METHOD

F1. INPUT						
Load factor for dead load	Load factor for dead load					
Load factor for live load		1.0				
		Moment	Shear]		
Moment and Shear Canacity	Inventory	424.4	155.3	1		
Moment and shedr Capacity	Operating	594.3	222.5			
Dead Load		281.4	108.2	1		
		Moment	Shear	Vehicle Weight		
	MS18	403.5	200.7	33.0		
Live Load Moment at Midspan (kN-m)	Type 1-1	312.1	130.8	17.0		
Live Load Shear at Support (KN)	Type 1-2	381.4	176.7	27.0		
	Туре 12-2	355.8	153.7	38.0		

F2. LOAD POSTING RATING FACTOR CALCULATIONS (ASM)										
	Vehicle	Inventory Rating			Operating Rating				Posting	
Vehicle Type	Weight (Metric	Mor	nent	She	ar	Mor	ment	Sh	ear	(Metric
.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Tons)	RF	LR	RF	LR	RF	LR	RF	LR	Tons)
MS18	33.0	0.35	11.7	0.23	7.7	0.78	25.6	0.57	18.8	8
Type 1-1	17.0	0.46	7.8	0.36	6.1	1.00	17.0	0.87	14.9	6
Type 1-2	27.0	0.38	10.1	0.27	7.2	0.82	22.2	0.65	17.5	7
Type 12-2	38.0	0.40	15.3	0.31	11.7	0.88	33.4	0.74	28.2	12

After confirmation of this sheet, click "NEXT" button then proceed directly to the next

Note					
Reference	Refer to the manual c Rating Examples" pag	efer to the manual calculation sheets as shown in the Appendix II "Load ating Examples" page 174, 175 in the Manual for Load Rating of Bridges.			
Verification	Results of calculations should be verified.				
Input Data	Unnecessary.				
Applied Equation	Rating Factor	RF = (R - A1 x D) / (A2 x L (1 + I))			
in Output	Load Rating	LR = RF x (Each Posting Vehicle Wejght)			

Sheet 11 (POSTSUM) :	Summary of Load Posting
G. SUMMARY OF LOAD POSTIN	G

	SUMMARY OF RESULTS FOR LOAD POSTING								
	Vehicle	Allowable Stress (ASM)		Load Fac	Load				
Vehicle Type	Weight (Metric Tons)	Rating Factor	Load Rating	Rating Factor	Load Rating	Posting (Tons)			
MS18	33.0	0.23	7.7	0.29	9.6	8T			
Type 1-1	17.0	0.36	6.1	0.45	7.6	6T			
Type 1-2	27.0	0.27	7.2	0.33	8.9	71			
Type 12-2	38.0	0.31	11.7	0.38	14.5	12T			

After confirmation of this sheet, click button "END GO TO RC DECK SLAB" then proceed directly to the next screen.

END GO TO RC DECK SLAB

Note			
Reference	Refer to the manual calculation sheets as shown in the Appendix II "Load Rating Examples" page 175 in the Manual for Load Rating of Bridges.		
Verification	Results of calculations should be verified.		
Input Data	Unnecessary.		

							BACKI		
A. GEN	IERAL						BACK	O MENU	
			A1. BRID	GE DESCI	RIPTION				
Bridge Loo	cation	REGION							
Bridge Na	me		STANDARD	BRIDGE					
Bridge	Simple or (Continuous	С	Reinforced	d Concrete	T-beams			
Туре	Number of	f Span	3						
Bridge of	Width (curb	to curb) (m)	7.32						
Number c	of Lanes		2						
Bridge Ler	ngth (m)		15.000	15.000	15.000			=45.000m	
Year Built			2000						
	Nos. of Gi	rder	4	Multiple m	onotholic w	ith deck sla	b.		
Structure	Girder Spo	acing (m)	2.400	on centers	;				
	Substructu	re	Wall Type	RC Piers an	d RC Cantil	ever Abutm	ents		
Wearing	thickness (mm)	0						
Course	material		Asphalt						
Material F	roperties		fc=	8.3	Мра	fs=	137.9	Мра	
Marchart			f'c=	20.7	Мра	fy=	275.8	Мра	
			Weight of	barrier rail	Wbr =	13.0	KN/m		
Assumptic	n		Concrete	Unit Weigh	tWu =	24.0	KN/m ³		
		Asphalt Ur	nit Weight W	/a =	22.0	KN/m ³			
Others		Rating Live	e Load is AA	ASHTO MS18	(HS20-44)				
						,		·	
								NEYT	

Sheet 1 (GENERAL): Input a Bridge Description for Load Rating

	Maria a f			f a a a		1
Material	rearor	fcorfy	tc or ts			
	Construction	I C OI I J	Inventory	Operating	Posting	
	Prior to 1959	17.2	6.9	10.3	6.9	
Conorato	after 1959	20.7	8.3	13.1	8.3]
Concrete	1977 to 1981	27.6	11.0	16.5	11.0	*pc
	after 1981	31.0	12.4	18.6	12.4	*pc
	Prior to 1954	227.5	124.1	172.4	124.1	
Rebar	after 1954	275.8	137.9	193.1	137.9	1
	Grade 50	344.7	137.9	224.1	137.9	*pc
	Grade 60	413.7	165.5	248.2	165.5	*pc

click "NEXT" button then proceed directly to the next

*pc: for Prestressed Concrete

Note			
Input Data	Light blue cells should be filled up.		
Differences compared with Simple RCDG	Simple or Continuous, Number of Span and Bridge Length.		
Material Properties	It should be taken from GENERAL NOTE in the as built drawings or in the Standard Bridge Design. In case of non-availability of data, It should be taken based on the Bridge Year Built. (refer to Table shown in the above Table)		

Sheet 2 (LAYOUT): Input Data of Bridge Layout and Dimension

A2. BRIDGE LAYOUT AND DIMENSION

0.200

proceed directly to the next

Note			
	Light blue cells should be filled up, these are;		
	- Girder Dimension : Width and Web Height		
ιηρυτ Δατά	- Slab Dimension : Fillet/Hunch Width and Height, and Slab Thickness		
	- Span Length		
Differences compared with Simple RCDG	Drawing of Bridge Elevation.		
Drawings (Elevation and Cross Section) for the objective bridge should be prepared as shown in this screen.			

Sheet 3 (DFDLLL): Demand Forces Calculations

B. DEMAND FORCES

	BO. INPUT					
	Girder width bw(m)	0.400				
	Girder Web height h (m)	1.000				
FOR	Fillet/Haunch width wf(m)	0.100				
DEAD	Fillet/Haunch height hf(m)	0.100				
LOAD	Slab thickness ts (m)	0.200				
	Slab width ws (m)	2.400				
	Span Length L(m)	15.000				

B1. DEAD LOAD CALCULATIONS					
	Self-weight of Girder		9.600		
	Fillet/Haunch		0.240		
	Slab Weight	Continuous	11.520		
Uniform Load per motor of Cirder (KNL/m)	Barrier Rail		6.500		
Uniform Load per meter of Girder (KN/m)	Asphalt Overlay		0.000		
	Total Load		27.860		
	Total DeadLoad		21.360		
	Total Superimposed [Dead Load	6.500		

B2. LOAD DEMAND MIDSPAN AND SUPPORT OF RCDG				
Conducting a Structural Analysis, the load demands for the RCDG should be obtained				
Description	At Midspan	At Pier Support		
Description	0.4L	1.0L		
Dead load moments, KN-m	496.7	-620.1		
Dead load shears, KN	-	-248.2		
MS18 max. positive moment, KN-m	536.3	0.0		
M\$18 max. negative moment, KN-m	-	-416.4		
M\$18 max. negative Shear force, KN	-	-334.5		

NEXT

Note			
Reference	Refer to the manual calculation sheets as shown in the Appendix II "Load Rating Examples" page 188 in the Manual for Load Rating of Bridges.		
Verification	Results of calculations should be verified.		
Input Data	Load Demands on continuous bridge should be given.		
Differences compared with Simple RCDG	Load demands should be separately analized with appropriate structural Model.		

Sheet 4 (CCLFM): Capacity Calculations for Moment at Midspan and Shear at Support

C. LOAD RATING CALCULATIONS

		C1. INPU	т		
(1) Common Inpu	ıt Data			At Midspan	At Pier
	Consta	Allowable Stress	fc	8.	3
Material Properties (Mpa)	Concrete	Strength	fc	20	.7
	Debar	Allowable Stress fs		137	.9
Rebui		Strength	fy	275	.8
(2) Input Data for	Moment C	Capacity		At Midspan	At Pier
Total Area of Steel As	(mm²)			10179	8005
Section Loss due to Re	əbar Exposur	e (%)		0	0
Total Assumed Area o	f Steel As(mr	m2)		10179	8005
Centroid of rebars fro	m bottom of	deck , yb (mm)		126	63
Centroid of rebars fro	m top of dec	ck , d (mm)		1074	1137
		12ts	+ bw	2800	-
Effective width of dec	ck , b _{eff} (mm	Span Le	ngth / 4	3750	-
		beff		2400	400
Ultimate capacity fac	tor (Uf)			0.90	0.90
(3) Input Data for	Shear Cap	acity		At Midspan	At Pier
Girder width bw(mm	1)			-	400
Depth of Shear Cracks (mm)					0
The Reduction Factor due to Shear Cracks				-	1.00
Centroid of rebars fro	m top of dec	ck , d (mm)		-	1137
Area of rebar Av(mm	ŕ)			-	201.1
Section Loss due to St	Irrups Exposu	re (%)		-	0
Spacing of stimung S/	r sieer As(m	nz)		-	201.1
Ultimate capacity fac	tor (Uf)			-	0.85
C1			SPAN	AT MIGSDan	At Pior
Rectangular stress bla	ck depth a (mm)		66.5	313.7
The Moment Capacit	v Mu (kN-m)			2629.6	1947.6
C	1.2 SHEAR	CAPACITY AT SUPP	ORT	At Midspan	At Pier
The shear FULL capac	ity due to co	ncrete section Vc (kN)		-	345.6
The shear capacity due to concrete section. Vc (kN)			-	345.6	
The shear FULL capac	ity due to she	ear reinforcement Vs (k	N)	-	840.7
The shear capacity d	ue to Stirrups	Vs (kN)		-	840.7
The total shear capac	city Vu (kN)			-	1008.3
					NEXT

	Note				
Reference	Refer to the manual c Rating Examples" pag	efer to the manual calculation sheets as shown in the Appendix II "Load ating Examples" page 189, 190 in the Manual for Load Rating of Bridges.			
Verification	Results of calculations	should be verified.			
	Light blue cells should	be filled up, these are;			
	Pabar	Main Reinforcements Schedule			
Input Data	KEDUI	Stirrups Schedule at Pier			
	Damage Evaluation	Secton Losses due to Rebar exposure caused by Moment			
		Depth of Shear Cracks			
		Secton Losses due to Stirrups exposure caused by Shear			
Differences compared with Simple RCDG	Rebar schedule at Pie	Rebar schedule at Pier should be added.			
Drawings	Drawings (Rebar Sche as shown in this scree	ebar Schedule) for the objective bridge should be prepared this screen.			
	Ultimate Moment	$M_{U} = Uf x As' x fy x (d - a)$			
Applied Equation in Output	Capacity M _U	where, $a = (As' x fy) / (0.85 x f'c x beff)$			
	Ultimate Shear Capacity V _u	$VU = \Phi x (Vc + Vs)$ where, Vc = 0.167 x Sqrt (f'c) x b x d Vs = 2 x Av' x fy x deff / S			

Sheet 5 (LRLFM): Load Rating Calculations

C2. LOAD RATING CALCULATIONS

C2.1	At Midspan	At Pier	
Load factor for dead load	1.3		
Inventory		2.1	7
Load lactor for live load	Operating	1.3	
Moment Ultimate Capacity at Mi	2629.6	-1947.6	
Dead Load Moment at Midspan	496.7	-620.1	
Live Load Moment at Midspan (kN-m)		536.3	-416.4
Shear Ultimate Capacity at Supp	-	-1008.3	
Dead Load Shear at Support (KN)	-	-248.2	
Live Load Shear at Support (KN)	-	-334.5	
Rating Live Load (Tons)		33	.0

C2.2 CALCULATIONS OF F	Rating Factor	Load Rating			
		Midspap	56.3		
		Midspan	Operating Rating	2.85	93.9
Pating Easter and Load Pating	Moment	At Dior	Inventory Rating	1.26	41.7
kaling factor and Load kaling		ALLIEL	Operating Rating	2.11	69.6
	Shoar	At Dier	Inventory Rating	0.94	31.2
	Shedi	ALLIEL	Operating Rating	1.58	52.0

Depend on the minimum value of Rating Factor > 1 or <1 , instruction in the below cell is automatically shown

Load Posting

Click following the above instruction

Return to GENERAL

Load Posting

According to the Instruction shown in this screen, User have to click a gray coloured cell "Return to GENERAL" or "LOAD POSTING", then proceed directly to the next screen.

Note						
Reference	Refer to the manual c Rating Examples" pag	efer to the manual calculation sheets as shown in the Appendix II "Load ating Examples" page 191 in the Manual for Load Rating of Bridges.				
Verification	Results of calculations	Results of calculations should be verified.				
Input Data	Unnecessary.	Unnecessary.				
Differences compared with Simple RCDG	Load Rating calculation	Load Rating calculations should be done not only at Midspan but also at Pier.				
Applied Equation	Rating Factor RF	$RF = (\Phi \times Rn - \gamma_{D} \times DL) / (\gamma_{LL} \times (LL + I))$				
in Output	Load Rating LR	LR = RF x (Vehicle Weight)				

Sheet 6 (POSTLL): Demand Forces Calculations for Load Posting Vehicles (Type 1-1, Type 1-2 and Type 12-2)

D. LOAD POSTING BY LOAD FACTOR METHOD (LFM)

D1. DEMAND FORCES FOR LOAD POSTING VEHICLES

D1.2 POSTING VEHICLE DEMAND FORCES								
Conducting a Structural Analysis, the load demands for the RCDG should be obtained separately and input the necessary load demands in the Table below.								
Posting Vehicle	Demand Forces	At Midspan	At Pier Support					
T 11	Moment	382.8	-205.0					
Type 1-1	Shear	-	-130.0					
Туре 1-2	Moment	492.6	-303.4					
	Shear	-	-188.1					
Туре 12-2	Moment	450.5	-392.6					
	Shear	-	-201.1					

After confirmation of this sheet, click "NEXT" button then proceed directly to the next

	Note
Reference	Refer to the manual calculation sheets as shown in the Appendix II "Load Rating Examples" page 192 in the Manual for Load Rating of Bridges.
Verification	Results of calculations should be verified.
Input Data	Load demands should be separately analyzed with appropriate structural Model.
Differences compared with Simple RCDG	Load Rating calculations should be done not only at Midspan but also at Pier

Sheet 7 (POSTLFM) : Posting Rating Calculations

D2. POSTING RATING CALCULATIONS

D2.1 INPUT								
Load facto	or for dec	ad load				1.3		
Load facto	or for live	load	Inve	entory		2.17		
	or for live	lodd	Ope	rating		1.3		
				Mon	nent	Shear		
					Midspan	At Pier	At Pier	
Moment Ultimate Capacity				2629.6	1947.6	1008.3		
Dead Load	k				496.7	620.1	248.2	
					Moment Shear		Vehicle	
					Midspan	At Pier		Weight
MST					536.3	416.4	334.5	33.0
Live Load Moment at Midspan (kN-m) Ty			Type 1-1	382.8	205.0	130.0	17.0	
Live Load Shear at Support (KN)			Type 1-2	492.6	303.4	188.1	27.0	
			Type 12-2	450.5	392.6	201.1	38.0	

D2.2 LOAD POSTING RATING FACTOR CALCULATIONS BY LFM											
	Vehicle		Invento	ry Rating	Rating			Operating Rating			
Vehicle	Weight (Motric	Mor	nent	She	ear	Mor	ment	She	ear	(Metric	
Type	Tons)	RF	LR	RF	LR	RF	LR	RF	LR	Tons)	
(1) A† N	Nidspan										
MS18	33.0	1.70	56.3	-	-	2.85	93.9	-	-	33	
Type 1-1	17.0	2.39	40.6	-	-	3.99	67.8	-	-	17	
Type 1-2	27.0	1.86	50.1	-	-	3.10	83.6	-	-	27	
Type 12-2	38.0	2.03	77.1	-	-	3.39	128.7	-	-	38	
(2) At P	ier Supp	ort									
MS18	33.0	1.26	41.7	0.94	31.2	2.11	69.6	1.58	52.0	31	
Type 1-1	17.0	2.57	43.6	2.43	41.3	4.28	72.8	4.06	69.0	17	
Type 1-2	27.0	1.73	46.8	1.68	45.4	2.89	78.1	2.80	75.7	27	
Type 12-2	38.0	1.34	50.9	1.57	59.7	2.24	85.0	2.62	99.7	38	

NEXT	

Note							
Reference	Refer to the manual c Rating Examples" pag	Refer to the manual calculation sheets as shown in the Appendix II "Load Rating Examples" page 192 in the Manual for Load Rating of Bridges.					
Verification	Results of calculations	esults of calculations should be verified.					
Input Data	Unnecessary.	Unnecessary.					
Differences compared with Simple RCDG	Load Rating calculation	Load Rating calculations should be done not only at Midspan but also at Pier					
Applied Equation	Rating Factor RF RF = ($\Phi \times Rn - \gamma_D \times DL$)/($\gamma_{LL} \times (LL + I)$)						
in Output	Load Rating LR	LR = RF x (Vehicle Weight)					

Sheet 8 (CCASM) : Moment and Shear Capacity Calculations by ASM

E. Load Rating by Allowable Stress Method

E1. MOMENT AND SHEAR CAPACITY CALCULATIONS

		E1.	1 Input			Midspan	At Pier
				60	Inventory	8	.3
		Concrete	fc	Operating	13.1		
Material Pr	operties				f'c	20).7
		D	ebar	fs	Inventory	137.9	
		, r	000	13	Operating	19	3.1
Total Assum	ned Area of S	teel As(m	m²)			10179	8005
Area of reb	par Av(mm²)					201.1	201.1
Spacing of	stirrups S (m	m)				150	150
Centroid o	f rebars from	top of de	ck , d (mm)			1074	1137
Effective w	idth of deck	, beff (mn	1)			2400	400
Girder wid	Ith bw(m)					400	400
Rebar Ratio	$o \rho = As / (b$	eff x d)				0.00395	0.01760
Modular Ro	atio of Elastic	ity n = Es /	Ec			12	12
k = √ [2pr	n + (pn)²] - p	n				0.2641	0.4722
J						0.9120	0.8426
kd						294.6	536.9
Slab thickn	ess ts (mm)					200.0	200.0
k						0.2743	-
Z						98.20	-
jd						975.80	958.04
Calaviation	n nfilini					1	
Calculation	n or ka				1		
n	AS	a	a	TS OCCO	Wd		
12	10179	10/4	2400	200.0	400		
nAs	nAsd	bts	1/2bts²	bwy	y/2+ts		
122148	131186952	480000	48000000	37840	247.3		
TS+y	Ycalculate				Yinput		
294.6	94.6				94.6	J	
E1.2 A		ND SHEA	R CAPACIT	Y CALCUL	ATIONS	Midspan	At Pier
		Capacit	/		Inventorv	2617.2	-853.8
		by conci	ete allowable	e stress Mc	Operating	4130.8	-1347.6
Momer	nt (kN-m)	Capacit	/		Inventory	1369.7	-1057.6
		by rebar	, allowable str	ess Ms	Operating	1918.0	-1480.9
		Capa	sity due to		Inventory	-	165.5
		concre	ete section	Vc	Operating	-	248.3
		Co	pacity		Inventory	-	420.3
Shec	ar (kN)	due	to rebar	Vs	Operating	-	588.6
						-	585.0
Shear capac			capacity	Vu	Operating	-	934.0
		-			peraing		030.7
			Aftor	onfirm	ation of	thic cho	
			Allel C			11112 2116	
			clic	ck "NEX	(T'' butto	n then	
			proc		octly to	thono	.+
proceed directly to the next							

	Note						
Reference	Refer to the manual o Rating Examples" pag	Refer to the manual calculation sheets as shown in the Appendix II "Load Rating Examples" page 193 - 196 in the Manual for Load Rating of Bridges.					
Verification	Results of calculation:	s should be verified.					
	Only Allowable Stress	of Rebar should be given.					
Input Data	Yinput should be given as the same value with Ycalculate. By giving a initial value of Yinput, then the User can get a value of Ycalculate. Repeating to apply Ycalculate as a Yinput, Yinput as same value with Ycalculate will be taken. In case Y is within the slab thickness, Ycalculate and Yinput will be applied as zero (0).						
Differences compared with Simple RCDG	Load Rating calculati	ions should be done not only at Midspan but also at Pier					
		Mc = (Compression zone resultant force "C") x fc x jd					
	Moment Capacity	$Ms = As \times fs \times jd$					
		Mu is governing smaller figure either Mc or Ms					
Applied Equation		Vc = 0.08 x Sqrt (f'c) x bw x d (for Inventory)					
	Shear Capacity	$Vc = 0.12 \times Sqrt(f'c) \times bw \times d$ (for Operating)					
	Shedi Cupucity	$Vs = (2 \times Av \times fs \times ds) / S$					
		$V_U = V_C + V_S$					

Sheet 9 (LRASM): Load Rating Calculations by ASM

E2.1 INPUT		Midspan	At Pier
Load factor for dead load	1	.0	
Load factor for live load		1	.0
Manant Canacity at Midenan (khl m)	Inventory	1369.71	-853.82
Momeni Capacity at Midspan (kiv-m)	Operating	1918.0	-1347.6
Dead Load Moment at Midspan (kN-m)	496.7	-620.1	
Live Load Moment at Midspan (kN-m)			-416.4
Shear Canadity at Support (KNI)	Inventory	-	-585.9
Operating		-	-836.9
Dead Load Shear at Support (KN)		-	-248.2
Live Load Shear at Support (KN)		-	-334.5
Rating Live Load (Tons)		33	3.0

E2.2. RATING FACTOR CALCULATIONS (ASM) Rating Factor						
Rating Factor and Load Rating		Midspap	Inventory Rating	1.63	53.72	
	Momont	muspan	Operating Rating	2.65	87.46	
	Moment	At Pier	Inventory Rating	0.56	18.52	
			Operating Rating	1.75	57.65	
	Shear	At Pier	Inventory Rating	1.01	33.31	
			Operating Rating	1.76	58.08	
After confirmation of this sheet,						
	click "NEXT" button then proceed directly to the next			t		

	Note					
Reference	Refer to the manual c Rating Examples" pag	efer to the manual calculation sheets as shown in the Appendix II "Load ating Examples" page 197 in the Manual for Load Rating of Bridges.				
Verification	Results of calculations	esults of calculations should be verified.				
Input Data	Unnecessary.	Jnnecessary.				
Differences compared with Simple RCDG	Load Rating calculation	ons should be done not only at Midspan but also at Pier				
Applied Equation Rating Factor		RF = (R - A1 x D) / (A2 x L (1 + I))				
in Output	Load Rating	LR = RF x 33.0 (Vehicle Wejght)				

F. I	.OAD	POSTING B	BY ALLOV	VABLE STRESS	METHOD
------	------	-----------	-----------------	--------------	---------------

F1. INPUT							
Load factor for dead load			1.0				
Load factor for live load		1	1.0				
		Mor	nent	Shear			
		Midspan	At Pier	At Pier			
Moment and Shear Canacity	Inventory	1369.7	-853.8	-585.9			
Moment and shedr Capacity	Operating	1918.0	-1347.6	-836.9			
Dead Load		496.7	-620.1	-248.2			
		Mor	nent	Shear	Vehicle		
		Midspan	At Pier	At Pier	Weight		
	MS18	536.3	-416.4	-334.5	33.0		
Live Load Moment at Midspan (kN-m)	Type 1-1	382.8	-205.0	-130.0	17.0		
Live Load Shear at Support (KN)	Type 1-2	492.6	-303.4	-188.1	27.0		
	Type 12-2	450.5	-392.6	-201.1	38.0		

	I	2. LOAD	POSTIN	IG RATING	FACTO	R CALC	ULATION	IS (ASM)		
	Vehicle		Invento	ory Rating			Operatir	ng Rating		Posting
Vehicle Type	Weight (Metric	Mor	nent	She	ar	Mor	nent	She	ear	(Metric
.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Tons)	RF	LR	RF	LR	RF	LR	RF	LR	Tons)
(1) AT N	IDSPAN									
MS18	33.0	1.63	53.7	-	-	2.65	87.5	-	-	33
Type 1-1	17.0	2.28	38.8	-	-	3.71	63.1	-	-	17
Type 1-2	27.0	1.77	47.9	-	-	2.89	77.9	-	-	27
Type 12-2	38.0	1.94	73.6	-	-	3.15	119.9	-	-	38
(2) AT P	IER SUPP	ORT								
MS18	33.0	0.56	18.5	1.01	33.3	1.75	57.7	1.76	58.1	19
Type 1-1	17.0	1.14	19.4	2.60	44.2	3.55	60.3	4.53	77.0	17
Type 1-2	27.0	0.77	20.8	1.80	48.5	2.40	64.7	3.13	84.5	21
Type 12-2	38.0	0.60	22.6	1.68	63.8	1.85	70.4	2.93	111.2	23

	NEXT	
--	------	--

	Note					
Reference	Refer to the manual c Rating Examples" pag	efer to the manual calculation sheets as shown in the Appendix II "Load ating Examples" page 197, 198 in the Manual for Load Rating of Bridges.				
Verification	Results of calculations	esults of calculations should be verified.				
Input Data	Unnecessary.	Jnnecessary.				
Differences compared with Simple RCDG	Load Rating calculati	ons should be done not only at Midspan but also at Pier				
Applied Equation	Rating Factor	RF = (R - A1 x D) / (A2 x L (1 + I))				
in Output	Load Rating	LR = RF x (Each Posting Vehicle Wejght)				

Sheet 11 (POSTSUM): Summary of Load Posting

G. SUMMARY OF LOAD POSTING

	SUMMARY OF RESULTS FOR LOAD POSTING								
	Vehicle	Allowable	Stress (ASM)	Load Fac	load				
Vehicle Type	Weight (Metric Tons)	Rating Factor	Load Rating	Rating Factor	Load Rating	Posting (Tons)			
MS18	33.0	0.56	18.5	0.94	31.2	19T			
Type 1-1	17.0	1.14	19.4	2.39	40.6	17T			
Type 1-2	27.0	0.77	20.8	1.68	45.4	211			
Type 12-2	38.0	0.60	22.6	1.34	50.9	23T			

After confirmation of this sheet, click button "END GO TO RC DECK SLAB" then directly proceed to the next screen.

END AND GO TO DECK SLAB

Note					
Reference	Refer to the manual calculation sheets as shown in the Appendix II "Load Rating Examples" page 198 in the Manual for Load Rating of Bridges.				
Verification	Results of calculations should be verified.				
Input Data	Unnecessary.				

6.4 PCDG (Prestressed Concrete Deck Girder Bridge)

6.4.1 Simple PCDG

INTERIOR PCDG SIMPLE								
A. GEN	IERAL						BACK	TO MENU
A1. BRIDGE DESCRIPTION								
Bridge Loo	cation	REGION						
Bridge Na	me							
Bridge	Simple or Co	ontinuous	S	Precast, Pr	estressed I G	irder Bridge		
Туре	Number of S	Span	1					
Bridge Wi	dth (curb to a	curb) (m)	7.32					
Number c	of Lanes		2					
Bridge Ler	ngth (m)		35.000					=35.000 m
Year Built			2003					
	Nos. of Girc	der	4					
Structure	Girder Space	cing (m)	2.100	on centers				
	Substructure	e	Concrete	bents and c	butments			
Wearing	thickness (r	nm)	50					
Course	material		Asphalt					
		f'c (Girder)	38		MPa		
		f'c (Slab)			24.2	MPa		
NI-1	DI	Ultimate S	trength of Tendons fu		1860	MPa		
noies on i	Fighs	Working F	orce		5270	kN (Effective after losses)		ses)
		<u> </u>	(DO T)		100	mm (from	soffit at Mid	dspan)
		Centroid	DIPC lendo	0115	824	mm (from soffit at Anchorage)		chorage)
		Weight of	barrier rail	Wbr =	13.0	KN/m		
		fy (Reinfor	cing Bars)		415	Мра		
Assumptic	n	Concrete	Unit Weight	Wu =	24.0	KN/m ³		
		Asphalt Ur	nit Weiaht W	/a =	22.0	KN/m ³		
Others		Ratina Live	e Load is AA	SHTO MS18	(HS20-44)			

Sheet 1 (GENERAL): Input Data of Bridge Description

Matorial	Year of	fo or fo		fc or fs]
Malenai	Construction	I C OF IY	Inventory	Operating	Posting	1
	Prior to 1959	17.2	6.9	10.3	6.9	
C	after 1959	20.7	8.3	13.1	8.3	
Concrete	1977 to 1981	27.6	11.0	16.5	11.0	*pc
	after 1981	31.0	12.4	18.6	12.4	*pc
	Prior to 1954	227.5	124.1	172.4	124.1	
Rebar	after 1954	275.8	137.9	193.1	137.9	1
	Grade 50	344.7	137.9	224.1	137.9	*pc
	Grade 60	413.7	165.5	248.2	165.5	*pc

After confirmation of this sheet, click "NEXT" button then proceed directly to the next

NEXT

*pc: for Prestressed Concrete

Note				
Input Data	Light blue cells should be filled up.			
Material Properties	It should be taken from GENERAL NOTE in the as built drawings or in the Standard Bridge Design. In case of non-availability of data, It should be taken based on the Bridge Year Built. (refer to Table shown in the above Table)			

Note				
	Light blue cells should be filled up, these are;			
Input Data	- Girder Dimension : Girder Height, and Width and Height for Upper/Lower Flange and Web			
	- Slab Dimension : Slab Width and Slab Thickness			
Drawings Drawings (Elevation, Cross Section and Girder Details) for the object should be prepared as shown in this screen.				

B. DEMAND FORCES

B1. DEAD LOAD CALCULATIONS

B1.1 INPUT				
	Area of G	0.645		
	Span Leng	Span Length (m)		
	Composit	Composite Girder Height (m)		
FOR	Girder He	ight (m)	1.600	
DEAD	Slab thick	ness (m)	0.200	
LOAD	Slab Spac	ing (m)	2.100	
	Weight of	Diaphram (kN/m)	1.5	
	Weight of	Barrier Rail (kN/m)	13	
	Number c	f Girder (nos.)	4	
B1.2 DEAD LOAD CALCULATIONS				
		Self-weight of Girder	15.49	
		Slab weight	10.08	
		Weight of Diaphram	1.50	
Uniform Load	Girder	Barrier Rail	6.50	
(KN/m)	Gildei	Asphalt Overlay	2.31	
,		Total	35.88	
		Total of Dead Load	27.07	
		Total of Superimposed Dead Load	8.81	
Dead Load Moment at Midspan M _{DL} (kN-m)			4145.0	
Superimposed Dead Load Moment at Midspan M _{SDL} (kN-m)			1349.0	
Dead Load Shear at Support V _{DL} (kN)			473.7	
Superimposed Dead Load Shear at Support $V_{\text{SDL}}\left(kN\right)$			154.2	

--

- -

B2. LIVE LOAD CALCULATIONS

B2. LIVE-LOAD CALCULATIONS					
LIVE-LOAD Type	MS18(HS20)				
Number of live load wheel line 1.148					
Impact factor	0.209 INPUT FOR LIVE LOAD				
span	35.00				
Max MS18 moment for 25 00m and	(wheel line	without Impact	ML	1227.9	
Max.Ms18 moment for 55.00m span,	wheeline	with Impact	MLL	1704.1	
Max.M\$18 shear at a distance "d"		without Impact	VL	148.8	
from the support/wheel line		with Impact	V _{LL}	206.6	

B2. FORCE DEMAND CALCULATIONS				
Description	Moment	Shear		
Description	C (0.5L)	At Support		
Dead load (kN-m)	4145.0	473.7		
Superimposed Dead load (kN-m)	1349.0	154.2		
M\$18 moment with Impact (kN-m)	1704.1	206.6		
After confirmation of this sheet				

After confirmation of this sheet,	. 4
click "NEXT" button then	
proceed directly to the next	

Note					
Reference	Refer to th Rating Exa	Refer to the manual calculation sheets as shown in the Appendix II "Load Rating Examples" page 213, 214 in the Manual for Load Rating of Bridges.			
Verification	Results of c	Results of calculations should be verified.			
Input Data	Weight of	Weight of Diaphram should be given.			
live load Forces	They are calculated besed on the Load Rating Manual Appendix III				
LIVE LOUG FOICES	(refer to Table shown in the next pages of this Sheet 3)				
		Uniform Load W _{DL}	= A x W		
	Dead Load	M _{DL}	$= 1/8 \times W_{DL} \times L^2$		
		V _{DL}	$= 1/2 \times W_{DL} \times L$		
Applied Equation in Output		ML	Refer to Load Rating Manual Appendix III		
	Live	MLL	= ML x D.F x Impact		
	Load	VL	Refer to Load Rating Manual Appendix III		
		VLL	= ML x D.F x Impact		

B3. SECTION PROPERTIES CALCULATION						
Load Condition		A (m ²)	Iz (m ⁴)	Y _b (m)	Y _t (m)	Y _t slab (m)
For Dead Loads		0.645	0.214	0.804	0.796	NA
For Superposed Dead Load and Live	e Loads	1.065	0.419	1.157	0.443	0.643
B4. STRESS CALCULATIONS (1) Stress at Midspan						
	Stresses in the PCI Girder (Mpa)					
Loading	Top Concrete		Bottom Concrete		Centroid of	
	Fiber		Fiber		Composite	
Dead Load (Self + Slab)	15.44		-15.61		6.85	
Prestress (Pef=5270kN)	-5.66		22.14		2.03	
Superimposed Dead Load	1.42		-3.73		0.00	
Live Load	1.	80	-4.	71	(0.00

After confirmation of this sheet, click "NEXT" button then proceed directly to the next

Note					
Reference	Refer to th Rating Exa	Refer to the manual calculation sheets as shown in the Appendix II "Load Rating Examples" page 214, 215 in the Manual for Load Rating of Bridges.			
Verification	Results of calculations should be verified.				
Input Data	Unnecessary.				
Applied Equation in Output	Stresses	= M / Sx (= Y / Iz x M)			

Sheet 5 (CCMS): Capacity Calculations for Moment at Midspan and Shear at Support

C. LOAD RATING BY LOAD FACTOR METHOD (LFM)

C1. CAPACITY CALCULATIONS

C1.1 MOMENT CAPACITY at MIDSPAN				
Assumed total prestressing loss $\sigma_{ ext{LOSS}}$ (Mpa)	158.1			
Ultimate Strength of Tendons fu (Mpa)	1860			
Web Width bw (mm)	203			
Φ	1.00			
Prestressing Steel Area As* (mm ²)	4261			
Section Loss (%)	0			
Total Assumed Area of Steel As(mm2)	4261			
Effective width of deck , beff (mm)	2100			
Centroid of Prestressing Steel from top of deck , d (mm)	1700			
Yield Strength of Tendons fy (Mpa)	1570			
k=2(1.04-fy/fu)	0.39			
Neutral axis location (mm)	231.2			
Moment Capacity at Midspan R (kN-m)	12007			

C1.2 SHEAR CAPACITY at SUPPORT		
Web Width bw (mm)	203	
Depth of Shear Cracks (mm)	0	
The Reduction Factor due to Shear Cracks	1.00	
Diameter of Stirrups (mm)	12	
Area of Stirrups Φs (mm²)		
Spacing of Stirrups (mm)		
Section Loss due to Stirrups Exposure (%)		
Total Assumed Area of Steel As(mm2)		
Nominal Shear Capacity Factor Φc		
Nominal Shear Strength provided by concrete Vc (kN)		
Nominal Shear Strength provided by Rebar Vs (kN)		
Shear Capacity, Vu		

After confirmation of this sheet, click "NEXT" button then proceed directly to the next

Note				
Reference	Refer to the manual calculation sheets as shown in the Appendix II "Load Rating Examples" page 216, 217 in the Manual for Load Rating of Bridges.			
Verification	Results of calculations should be verified.			
	Light blue cells should be	e filled up, these are;		
	Prostrossing Stool	Section Losses (%)		
	Freshessing steel	Yield strength fy		
Input Data	Cinput should be given as the same value with Neutral axis location in the left side cell of Cinput. By giving a initial value of Cinput, then the User can get a value of Neutral axis location. Repeating to apply Neutral axis location as a Cinput, Cinput as same value with Neutral axis location will be taken.			
	Dobor	Diameter of Stirrups		
	Repar	Spacing of Stirrups		
	Democrac Evaluation	Depth of Shear Cracks		
	Damage Evaluation	Secton Losses due to Stirrups exposure caused by Shear		
Applied Equation in Output	Moment Capacity M_{U}	$M_{U} = Uf x As' x fy x (d - a)$ where, $a = (As' x fy) / (0.85 x f'c x beff)$		
	Shear Capacity V_{U}	$ \begin{array}{l} VU = \Phi \; x \; (\; Vc + Vs \;) \\ \text{where,} Vc = 0.05 \; x \; Sqrt \; (\; f'c \;) \; x \; b \; x \; d \; x \; \Phi \\ Vs = 2 \; x \; Av' \; x \; fy \; x \; deff \; / \; S \end{array} $		

Sheet 6 (LRC): Load Rating Calculations

C2. LOAD RATING CALCULATIONS

C2.1 LOAD RATING BASED ON SERVICEABILITY LIMIT STATE						
(1) USING COMPRESSIVE STRESS						
For Strength Factor	0.6					
For Strength Factor	0.4					
For Dead Load Factor	0.5					
Concrete Compressive Stress	38					
Dead Load Stress	16.87					
Prestress after all losses	-5.66					
Secondary Prestress	0.00					
Live Load stresses including Impact	1.80					
Using Compressive Stress Under All Load Combination	6.44					
Using Compressive Stress Under Live Load	5.33					
(2) USING ALLOWABLE TENSION STRESS						
Dead Load Stress	-19.33					
Prestress after all losses	22.14					
Secondary Prestress	0.00					
Live Load stresses including Impact	-4.71					
Using the Allowable Tension in Concrete	1.25					

C2.2 LOAD RATING BASED ON STRENGTH LIMIT STATE						
Dead Load Factor		۱	.3			
Live Load factor	Inventory	2.17				
	Operating	1	.3			
		Section C (at Midspan)	Section B (Support)			
		Moment	Shear			
Moment and Shear Capacity	12006.6	1489.4				
Moment and Shear due to Dead Load	4145.0	473.7				
Moment and Shear due to Superimposed Dead	1349.0	154.2				
Moment and Shear due to Live Load	1704.1	206.6				

C2.3 LOAD RATING CALCULATIONS						
Description		ment	Shear			
Description	Inventory	Operating	Inventory	Operating		
Rating Factor	1.32	2.20	1.50	2.51		
Rating Live Load (MS18) (Metic Tons)	33.0					
Load Rating Calculations	43.4	72.5	49.6	82.7		

After confirmation of this sheet, click "NEXT" button then proceed directly to the next

Note							
Refer	ence Refer to the manual calculation sheets as shown in the Appendix II "Load Rating Examples" page 217, 218 in the Manual for Load Rating of Bridges.						
Verific	cation	Results of calculations should be verified.					
Input Data Unnecessary.							
Applied Equation in Output	Rating	Under SLS	Compression	All Load	= 0.6 x f'c - (Fd + Fp + Fs) / Fl		
				Live Load	= 0.4 x f'c - 0.5 x (Fd + Fp + Fs) / Fl		
	(RF)		Tension		= 0.5 x sqrt (f'c) - (Fd + Fp + Fs) / Fl		
		Under Strength Limit State			= (Φ x Rn - γD x DL) / (γLL x (LL + I))		
		Load R	ating (LR)		LR = RF x 33.0 (Vehicle Weight)		

	C2.3 SUMM	ARY OF RATI	NG FACTO		OAD RATI	NG		1
Weight of Vehicle (Metric Tons)		33	At Midspan		At Support			
			RF	LR	RF	LR		
Serviceability Rating Limit State	Compression	All Load	6.44	212.6	-	-		
		Live Load	5.33	176.0	-	-		
Factor	Linin Sidie	Allowable	Allowable Tension		41.3	-	-	
and Load Rating Strength Limit State	Manant	Inventory	1.32	43.4	-	-		
	Strongth Limit State	Momeni	Operating	2.20	72.5	-	-	
	Sherigin Linin Sidle	Charan	Inventory	-	-	1.50	49.6	
	snear	Operating	-	-	2.51	82.7		
Minimum Rating Factor and Load Rating				1.25	41.3	1.50	49.6	
			R	eturn to (Click foll	GENERAL	above ir	nstruction]
	Return to GENERAL Load Posting				Accor thi a g GENE proce	ding to is screer gray col RAL'' or eed dire	the Instr n, User h oured c "LOAD ctly to tl	uction shown ave to click ell "Return to POSTING", the he next screer

Sheet 7 (LRSUM) : Summary of Rating Factor and Load Rating

Note					
Reference	Refer to the manual calculation sheets as shown in the Appendix II "Load Rating Examples" page 217, 218 in the Manual for Load Rating of Bridges.				
Verification	Results of calculations should be verified.				
Input Data	Unnecessary.				
Sheet 8 (POSTLL) : Demand Forces Calculations for Load Posting Vehicles (Type 1-1, Type 1-2 and Type 12-2) D. LOAD POSTING BY LOAD FACTOR METHOD (LFM)

D. LOAD FOSTING BY LOAD FACTOR METHOD (LFA

D1.1 DEMAND FORCES FOR LOAD POSTING VEHICLES					
(1) POSTING VEHICLE Type	1-1				
LIVE-LOAD Type	Type1-1				
Number of live load wheel line	1.148				
Impact factor	0.209				
span	35.00				
Type 1-1 moment for 35,00m span	wheelline	without Impact	ML	695.45	
Type 1-1 moment to: 55:00mspan /	WIEEIIIIE	with Impact	M _{LL}	965.19	
Type 1-1 shear at a distance "d"		without Impact	VL	81.46	
from the support/wheel line		with Impact	V _{LL}	113.06	
(2) POSTING VEHICLE Type	1-2				
LIVE-LOAD Type	Type1-2				
		without Impact	ML	1036.00	
Type 1-2 moment for 35.00m span /	wheeline	with Impact	M _{LL}	1437.83	
Type 1-2 shear at a distance "d"		without Impact	VL	123.91	
from the support/wheel line		with Impact	V _{LL}	171.97	
(3) POSTING VEHICLE Type	12-2				
LIVE-LOAD Type	Type12-2				
Type 12.2 moment for 35.00m span	/wheel line	without Impact	ML	1261.27	
Type 12-2 moment for 35.00m span / wheet the		with Impact	M _{LL}	1750.48	
Type 12-2 shear at a distance "d"		without Impact	VL	156.27	
from the support/wheel line		with Impact	V _{LL}	216.88	

D1. DEMAND FORCES FOR LOAD POSTING VEHICLES

After confirmation of this sheet, click "NEXT" button then proceed directly to the next

Note					
Reference	Refer to the manual calculation sheets as shown in the Appendix II "Load Rating Examples" page 219 in the Manual for Load Rating of Bridges.				
Verification	Results of a	Results of calculations should be verified.			
Input Data	Unnecessary.				
Posting Live Load	They are calculated besed on the Load Rating Manual Appendix III.				
Forces	(refer to Table shown in the next pages of this Sheet 8)				
		ML	Refer to Load Rating Manual Appendix III		
Applied Equation in Output	Posting	MLL	= ML x D.F x Impact		
	Live	VL	Refer to Load Rating Manual Appendix III		
	2000	VLL	= ML x D.F x Impact		

Sheet 9 (POSTLR1): Posting Load Rating Calculations (1)

D2. POSTING RATING CALCULATIONS

D2.1 POSTING RATING BASED ON SERVICEABILITY LIMIT STATE							
(1) USING COMPRESSIVE STRESS							
Description		At Midspan	At Support				
For Strength Factor			0.6				
For Strength Factor			0.4				
For Dead Load Factor			0.5				
Concrete Compressive Stress			38				
Dead Load Stress		16.87	-				
Prestress after all losses		-5.66	-				
Secondary Prestress		0.00	-				
	Type 1-1	1.02	-				
Live Load stresses including Impact	Type 1-2	1.52	-				
	Type 12-2	1.85	-				
Using Compressive Stress	Type 1-1	11.37	-				
Under All Load Combination	Type 1-2	7.64	-				
onder All Load Combindhon	Type 12-2	6.27	-				
	Type 1-1	9.42	-				
Using Compressive Stress of Live Load	Type 1-2	6.32	-				
	Type 12-2	5.19	-				
(2) USING ALLOWABLE TENSION STRES	S						
Dead Load Stress		-19.33	-				
Prestress after all losses		22.14	-				
Secondary Prestress		0.00	-				
	Type 1-1	-2.67	-				
Live Load stresses including Impact	Type 1-2	-3.97	-				
	Type 12-2	-4.83	-				
	Type 1-1	2.21	-				
Using the Allowable Tension in Concrete	Type 1-2	1.48	-				
	Туре 12-2	1.22	-				

After confirmation of this sheet, click "NEXT" button then proce

NEXT	
	-

ĸ	INEAT	DUITON MEN
ee	d dire	ctly to the next

	Note						
ReferenceRefer to the manual calculation sheets as shown in the Appendix II "Load Rating Examples" page 219, 220 in the Manual for Load Rating of Bridges.							
Verification Results of calculations should be verified.					ified.		
Input Data Unnecessary.							
	S	tresses for P	osting Live Loc	ıd	$= M / Sx (= Y / Iz \times M)$		
Applied	Ratina	C		All Load	= 0.6 x f'c - (Fd + Fp + Fs) / Fl		
in Output	Factor	Under V	Compression	Live Load	= 0.4 x f'c - 0.5 x (Fd + Fp + Fs) / Fl		
	(RF) 313	Tension		= 0.5 x sqrt (f'c) - (Fd + Fp + Fs) / Fl			

Sheet 10 (POSTLR2): Posting Load Rating Calculations (2)

D3.1 POSTING RATING BASED ON STRENGTH LIMIT STATE							
Dead Load Factor	1	.3					
live Lond factors	Inventory	2	.17				
Live Lodd laciois	Operating	1	.3				
Description	Moment at Midspan	Shear at Support					
Moment and Shear Capacity	12007	1489					
Moment and Shear due to Dead Load		4145.0	473.7				
Moment and Shear due to Superimposed De	1349.0	154.2					
	Type 1-1	965.2	113.1				
Moment and Shear due to Live Load	Type 1-2	1437.8	172.0				
	Type 12-2	1750.5	216.9				

D3. LOAD RATING CALCULATIONS

D3.2 POSTING RATING CALCULATIONS							
Description		Moment at Midspan		Shear at Support			
Description			Inventory	Operating	Inventory	Operating	
Rating Factor		Type 1-1	2.32	3.88	2.74	4.58	
		Type 1-2	1.56	2.60	1.80	3.01	
		Type 12-2	1.28	2.14	1.43	2.39	
Postting Live Logd		Type 1-1	17.0				
(Metic Tons)	Weight of vehicle	Type 1-2	27.0				
(Mene Toris)		Type 12-2	38.0				
Load Rating Calculations		Type 1-1	39.5	65.9	46.6	77.9	
		Type 1-2	26.5	70.3	30.7	81.3	
		Туре 12-2	21.8	81.2	24.3	90.7	

After confirmation of this sheet, click "NEXT" button then proceed directly to the next

		Note			
Reference	Refer to the manual calc Rating Examples'' page 2	culation sheets as shown in the Appendix II "Load 220 in the Manual for Load Rating of Bridges.			
Verification	Results of calculations should be verified.				
Input Data	Unnecessary.				
Applied Equation	Rating Factor RF	$RF = (\Phi \times Rn - \gamma_{D} \times DL) / (\gamma_{LL} \times (LL + I))$			
in Output	Load Rating LR	LR = RF x (Each Posting Vehicle Weight)			

	D3.3 SUMMARY	OF POSTING	RATING F	ACTOR A	ND LOAD	RATING	
				At Mi	dspan	At Su	pport
				RF	LR	RF	LR
(1) POST	ING VEHICLE TYPE	1-1		Weight c	of Vehicle	17 (Meto	oric Tons)
		- ·	All Load	11.37	193.4	-	-
Patina	Serviceability	Compression	Live Load	9.42	160.1	-	-
Factor	Limit sidle	Allowable	Tension	2.21	37.6	-	-
and			Inventory	2.32	39.5	-	-
Load	Characterite Line it Charter	Moment	Operating	3.88	65.9	-	-
Rating	Rating Strength Limit State	Class and	Inventory	-	-	2.74	46.6
		Snear	Operating	-	-	4.58	77.9
Minimum Rating Factor and Load Rating				2.21	37.6	2.74	46.6
(2) POST	ING VEHICLE TYPE	1-2		Weight o	of Vehicle	27 (Meto	oric Tons)
	Serviceability Limit State	Compression	All Load	7.64	206.2	-	-
Ratina			Live Load	6.32	170.7	-	-
Factor		Allowable Tension		1.48	40.1	-	-
and		Moment	Inventory	1.56	42.1	-	-
Load	Strongth Limit State		Operating	2.60	70.3	-	-
Rating	Silengin Linii Sidie	Shear	Inventory	-	-	1.80	48.7
		Sneur	Operating	-	-	3.01	81.3
Minimum	Rating Factor and Load	d Rating		1.48	40.1	1.80	48.7
(3) POST	ING VEHICLE TYPE	12-2		Weight o	of Vehicle	38 (Meto	oric Tons)
	Considere statility :	Comprosion	All Load	6.27	238.3	-	-
Ratina	Servicedbility	Compression	Live Load	5.19	197.3	-	-
Factor		Allowable	Tension	1.22	46.3	-	-
and		Moment	Inventory	1.28	48.7	-	-
Load	Strongth Limit State	Moment	Operating	2.14	81.2	-	-
Rating		Shoar	Inventory	-	-	1.43	54.4
		Shear	Operating	-	-	2.39	90.7
Minimum	Rating Factor and Load	d Rating		1.22	46.3	1.43	54.4

Sheet 11 (POSTSUM): Summary of Posting Rating Factor and Load Rating

After confirmation of this sheet, click "NEXT" button then proceed directly to the next

Note					
Reference	Refer to the manual calculation sheets as shown in the Appendix II "Load Rating Examples" page 219, 220, 221 in the Manual for Load Rating of Bridges.				
Verification	Results of calculations should be verified.				
Input Data	Unnecessary.				

SUMMARY OF RESULTS FOR LOAD POSTING								
	Vehicle	at midspan		AT SUPPORT		Load		
Vehicle Type	Weight (Metric Tons)	Rating Factor	Load Rating	Rating Factor	Load Rating	Posting (Tons)		
MS18	33.0	1.25	41.3	1.50	49.6	33T		
Type 1-1	17.0	2.21	37.6	2.74	46.6	17T		
Type 1-2	27.0	1.48	40.1	1.80	48.7	271		
Type 12-2	38.0	1.22	46.3	1.43	54.4	38T		

Sheet 12 (SUMMARY): Summary of Load Posting E. SUMMARY OF LOAD POSTING

After confirmation of this sheet, click button "END GO TO RC DECK SLAB" then proceed directly to the next screen.

END AND GO TO DECK SLAB

	Note				
Reference	Refer to the manual calculation sheets as shown in the Appendix II "Load Rating Examples" page 221 in the Manual for Load Rating of Bridges.				
Verification	Results of calculations should be verified.				
Input Data	Unnecessary.				

6.4.2 Continuous PCDG

							D.A.G.		
A. GEN	IEKAL						BACK	TO MENU	
			A1. BRI	DGE DESC	RIPTION				
Bridge Loo	cation	REGION							
Bridge Na	me								
Bridge Simple or Continuous		С	Precast, Pr	restressed PC	CI Girder Bri	dge			
Type Number of Span		3							
Bridge Width (curb to curb) (m)		7.32	-						
Number o	f Lanes		2						
Bridge Ler	ngth (m)		35.000	35.000	35.000			=105.000m	
Year Built			2000						
	Nos. of Girder		4	Superstructure made continuous for live loading					
Structure	Girder Spacing (m)		2.100	on centers					
	SUDSTRUCTUR	e	Concrete	bents and abutments					
Wearing	thickness (r	nm)	50	-					
Course	material		Asphalt						
		f'c (Girder	Girder)		38	MPa			
		f'c (Slab)	f'c (Slab)		24.2	MPa			
Notes on F	Plans	Ultimate S	Ultimate Strength of Te		1860	MPa			
140163 0111	ians	Working F	Working Force		6750	kN (Effective after losses)		ises)	
		Controld	F PC Tondo		100	mm (from	soffit at Mi	dspan)	
		Centrold C	DIFC Tendo	115	885	mm (from	mm (from soffit at Anchorage)		
		Weight of	t of barrier rail Wbr =		13.0	KN/m	KN/m		
		fy (Reinfor	cing Bars)		415	Мра	Мра		
Assumptic	n	Concrete	Unit Weight	Wu =	24.0	KN/m ³			
		Asphalt Ur	nit Weight W	/a =	22.0	KN/m ³			
Others		Ratina Liv	e Load is AA	SHTO MS18	(HS20-44)	Tradition of the second s			

Sheet 1 (GENERAL): Input Data of Bridge Description

						[
Matorial	Year of	Fa an Fa		ור		
Malenai	Construction	IC OF IV	Inventory	Operating	Posting	
	Prior to 1959	17.2	6.9	10.3	6.9	
Concrete	after 1959	20.7	8.3	13.1	8.3] L
	1977 to 1981	27.6	11.0	16.5	11.0	*pc
	after 1981	31.0	12.4	18.6	12.4	*pc
	Prior to 1954	227.5	124.1	172.4	124.1	1 1
	after 1954	275.8	137.9	193.1	137.9	
Repar	Grade 50	344.7	137.9	224.1	137.9	*pc
	Grade 60	413.7	165.5	248.2	165.5	*pc

After confirmation of this sheet, click "NEXT" button then proceed directly to the next

NEXT

٦

*pc: for Prestressed Concrete

	Note				
Input Data	Light blue cells should be filled up.				
Differences compared with Simple PCDG	Simple or Continuous, Number of Span and Bridge Length.				
Material Properties	It should be taken from GENERAL NOTE in the as built drawings or in the Standard Bridge Design. In case of non-availability of data, It should be taken based on the Bridge Year Built. (refer to Table shown in the above Table)				

Sheet 2 (LAYOUT) : Input a Bridge Layout and Dimension for Load Rating

	Note
	Light blue cells should be filled up, these are;
Input Data	- Girder Dimension:Girder Height, and Width and Height for Upper/Lower Flange and Web
	- Slab Dimension : Slab Width and Slab Thickness
Differences compared with Simple PCDG	Drawing of Bridge Elevation.
Drawings	Drawings (Elevation, Cross Section and Girder Details) for the objective bridge should be prepared as shown in this screen.

Sheet 3 (DFDLLL): Demand Forces Calculations

B. DEMAND FORCES

B1. DEAD LOAD CALCULATIONS

	B1.1 INPUT	
	Area of Girder (m ²)	0.653
	Span Length (m)	35.000
	Composite Girder Height (m)	1.80
FOR	Girder Height (m)	1.60
DEAD	Slab thickness (m)	0.200
LOAD	Slab Spacing (m)	2.100
	Weight of Diaphram (kN/m)	1.5
	Weight of Barrier Rail (kN/m)	13
	Number of Girder (nos.)	4
	B1.2 DEAD LOAD CALCULATIONS	

Dead Load Moment at Midspan M _{DL} (kN-m)	4173.5
Dead Load Shear at Support V _{DL} (kN)	477.0

B2. FORCE DEMAND CALCULATIONS

B2.1 INPUT	
Number of Lanes	2
Fraction DF	1.148

B2.2 FORCE DEMAND CALCULATIONS						
Conducting a Structural Analysis, the load demands for the PCDG should be obtained separately and input the necessary load demands in the Table below.						
Descriptio	C (0.5L)	At Pier Support				
Moments	Dead load (kN-m)	4173.5	0.0			
	Superimposed Dead load (kN-m)	594.7	-792.9			
	M\$18 moment with Impact (kN-m)	2441.4	-2770.7			
	Dead load (kN)	0.0	-477.0			
	Superimposed Dead load (kN)	0.0	-135.9			
Chie enro	MS18 max. positive shear force (kN)	202.9	67.0			
snears	M\$18 max. negative shear force (kN)	-202.9	-465.3			
	M\$18 max. positive moment for shear (kN-m)	2319.3	457.9			
	M\$18 max. negative moment for shear (kN-m)	-2319.3	-449.8			

After confirmation of this sheet, click "NEXT" button then proceed directly to the next

NEXI	
ILLAI	

		Note					
Reference	Refer to th Rating Exa	efer to the manual calculation sheets as shown in the Appendix II "Load ating Examples" page 235, 236 in the Manual for Load Rating of Bridges.					
Verification	Results of a	Results of calculations should be verified.					
Input Data	Weight of Load Dem	Weight of Diaphram should be given. Load Demands on continuous bridge should be given.					
Differences compared with Simple PCDG	Load demands should be separately analyzed with appropriate structural Model.						
		Uniform Load W _{DL}	= A x W				
Applied Equation	Dead Load	M _{DL}	$= 1/8 \times W_{DL} \times L^2$				
		V _{DL}	$= 1/2 \times W_{DL} \times L$				

Load Condition		A (m ²)	Iz (m ⁴)	Y _b (m)	Y _t (m)	Y _t slab (m)	
For Dead Loads		0.653	0.217	0.812	0.788	NA	
For Live Loads		1.073	0.420	1.159	0.441	0.641	
	B4. STRE	SS CALCI	JLATIONS				
(1) Stress at Midspan							
		Str	esses in the P	C Girder (N	Apa)		
Loading	Top Concrete		Bottom Concrete		Centroid of		
	Fik	Fiber		Fiber		Composite	
Dead Load (Self + Slab)	15.17		-15	.63	6.69		
Prestress (Pef=6750kN)	-7.13		28.	32	2.63		
Superimposed Dead Load	0.62		-1.	64	0.00		
Live Load	2.56		-6.	74	0.00		
Live Load Moment for Shear 2.		43	-6.40		0.00		
(2) Stress at Pier Support							
			Stre	esses in the F	°C Girder (M	pa)	
Loading			Top Concrete Fiber	Bottom Concrete Fiber	Centroid of Composite	Top of Slab	
Dead Load (Self + Slab)			0.00	0.00	0.00	0.00	
Prestress (Pef=6750kN)			12.13	8.48	11.13	0.00	
Superimposed Dead Load		-0.83	2.19	0.00	-1.21		
Live Load			-2.91	7.65	0.00	-4.23	
Live Load Moment for Shear	Live Load Moment for Shear				0.00	-0.69	

Sheet 4 (DSC): Demand Stresses Calculations B3. SECTION PROPERTIES CALCULATION

After confirmation of this sheet, click "NEXT" button then proceed directly to the next

Note					
Reference	Refer to the manual calculation sheets as shown in the Appendix II "Load Rating Examples" page 236, 237 in the Manual for Load Rating of Bridges.				
Verification	Results of c	Results of calculations should be verified.			
Input Data	Unnecessary.				
Differences compared with Simple PCDG	Load Rating calculations should be done not only at Midspan but also at Pier.				
Applied Equation in Output	Stresses	Moment	= M / Sx (= Y / Iz x M)		

Sheet 5 (CCMS1): Capacity Calculations for Moment at Midspan and Shear at Support

C. LOAD RATING BY LOAD FACTOR METHOD

C1. CAPACITY CALCULATIONS

C1.1 MOMENT CAPACITY at MIDSPAN	
Assumed total prestressing loss including creep $\sigma_{ t LOSS}$ (Mpa)	204.6
Ultimate Strength of Tendons fu (Mpa)	1860
Web Width bw (mm)	203
Prestressing Steel Area As* (mm ²)	5670
Section Loss (%)	0
Total Assumed Area of Steel As(mm2)	5670
Effective width of deck , beff (mm)	2100
Centroid of Prestressing Steel from top of deck , d (mm)	1700
Yield Strength of Tendons fy (Mpa)	1570
k=2(1.04-fy/fu)	0.39
Neutral axis location (mm)	560.6
Moment Capacity at Midspan R (kN-m)	14284

C1.2 MOMENT CAPACITY at PIER SUPPORT				
Ultimate Strength of Rebar fy (Mpa)	415			
Number of Rebars (nos.)	15			
Diameter of Main Rebar (mm)	36			
Area of one main rebar Φs (mm2)	1017			
Concrete Cover (mm)	38			
Resistance Reduction Factor	0.90			
Rebars Area As (mm ²)	15255			
Section Loss (%)	10			
Total Assumed Area of Steel As(mm2)	13730			
Centroid of Rebar from top of compression fiber, d (mm)	1744			
Web Width bw (mm)	711.0			
Rebar Ratio ρ = As / (beff x d) ρ	0.01107			
Neutral axis location (mm)	608.1			
Moment Capacity at Face of Support R (kN-m)	8045			

After confirmation of this sheet, click "NEXT" button then proceed directly to the next

Note						
Reference	Refer to the manual calculation sheets as shown in the Appendix II "Load Rating Examples" page 238, 239 in the Manual for Load Rating of Bridges.					
Verification	Results of calculations sh	Results of calculations should be verified.				
	Light blue cells should be	e filled up, these are;				
		Assumed prestressing loss including creep loss (Mpa)				
	Prestressing Steel	Section Losses (%)				
		Yield strength fy				
Input Data	Cinput should be given as the same value with Neutral axis location in the left side cell of Cinput. By giving a initial value of Cinput, then the User can get a value of Neutral axis location. Repeating to apply Neutral axis location as a Cinput, Cinput as same value with Neutral axis location will be taken.					
		Number of main rebar				
	Rebar at Pier Support	Diameter of main rebar				
		Concrete cover				
	Damage Evaluation	Secton Losses due to main rebar exposure caused by Moment				
Differences compared with Simple PCDG	Load Rating calculations should be done not only at Midspan but also at Pier.					
Applied Equation in Output	Moment Capacity $M_U = Uf x As' x fy x (d - a)$ where, $a = (As' x fy) / (0.85 x f'c x beff)$					

Sheet 6 (CCMS2): Capacity Calculations for Moment at Midspan and Shear at Support

C1. CAPACITY CALCULATIONS

C1.3 SHEAR CAPACITY at MIDSPAN				
Diameter of Stirrups (mm)	12			
Area of Stirrups (mm²)	113			
Spacing of Stirrups (mm)	250			
Nominal Shear Capacity Factor Φ	0.85			
Web Width bw (mm)	203			
Depth of Shear Cracks (mm)				
The Reduction Factor due to Shear Cracks				
Cracking Moment (kN-m)				
Factored Total Moment Mmax (kN-m)				
Factored Shear Force Vi (kN)				
Nominal Shear Strength Vci (kN)				
Nominal Shear Strength Vcw (kN)				
Nominal Shear Strength provided by concrete Vc (kN)				
Nominal Shear Strength provided by Rebar Vs (kN)				
Shear Capacity $Vu = \Phi(Vc + Vs)$ (kN)				

C1.4 SHEAR CAPACITY at PIER B				
Diameter of Stirrups (mm)				
Area of Stirrups (mm ²)	113			
Spacing of Stirrups (mm)	150			
Nominal Shear Capacity Factor Φ	0.85			
Web Width bw (mm)	203			
Depth of Shear Cracks (mm)				
The Reduction Factor due to Shear Cracks				
Cracking Moment (kN-m)				
Factored Total Moment Mmax (kN-m)				
Factored Shear Force Vi (kN)				
Nominal Shear Strength Vci (kN)				
Nominal Shear Strength Vcw (kN)				
Nominal Shear Strength provided by concrete Vc (kN)				
Nominal Shear Strength provided by Rebar Vs (kN)				
Shear Capacity Vu				

After confirmation of this sheet,					
click "NEXT" button then					
proceed directly to the next					

Note							
Reference	Refer to the manual calculation sheets as shown in the Appendix II "Load Rating Examples" page 240, 241 in the Manual for Load Rating of Bridges.						
Verification	Results of calculations should be verified.						
	Light blue cells should be	e filled up, these are;					
Input Data	Rebar both at Midspan and	Diameter of stirrups					
mpor baia	at Pier Support	Spacing of stirrups					
	Damage Evaluation	Depth of Shear Cracks					
Differences compared with Simple PCDG	Load Rating calculations should be done not only at Midspan but also at Pier.						
Applied Equation in Output	Shear Capacity V_U $VU = \Phi \times (V_C + V_S)$ where, $V_C = 0.05 \times \text{Sqrt} (f'_C) \times b \times d \times \Phi$ $V_S = 2 \times \text{Av'} \times \text{fy} \times \text{deff} / S$						

Sheet 7 (LRC): Load Rating Calculations

C2. LOAD RATING CALCULATIONS

C2.1 LOAD RATING BASED ON SERVICEABILITY LIMIT STATE						
(1) USING COMPRESSIVE STRESS						
	Section C	Pier Support B				
For Strength Factor		0.6				
For Strength Factor		0.4				
For Dead Load Factor		0.5				
Concrete Compressive Stress		38				
Dead Load Stress	15.80 2.19					
Prestress after all losses	-7.13	8.48				
Secondary Prestress	0.00	0.00				
Live Load stresses including Impact	2.56	7.65				
Using Compressive Stress Under All Load Combination	5.52	1.59				
Using Compressive Stress of Live Load	4.24	1.29				
(2) USING ALLOWABLE TENSION STRESS						
Dead Load Stress	-17.27	-0.83				
Prestress after all losses	28.32	12.13				
Secondary Prestress	0.00	0.00				
Live Load stresses including Impact	-6.74	-2.91				
Using the Allowable Tension in Concrete	2.10	4.95				

C2.2 LOAD RATING BASED ON STRENGTH LIMIT STATE					
Dead Load Factor				1.3	
Live Lond factors		2.17			
	Operating		1.3		
		Section C (at Midspan	Section E	3 (Support)
		Moment	Shear	Moment	Shear
Moment and Shear Capacity		14284	716	-8045	-1905
Moment and Shear due to Dead Load	4174	0.00	0.00	-477	
Moment and Shear due to Superimposed Dead	595	0.00	-793	-136	
Moment and Shear due to Live Load	2441	203	-2771	-465	

C2.3 LOAD RATING CALCULATIONS						
Description		Moment		Shear		
Description	Description		Operating	Inventory	Operating	
Pating Eactor	Section C (Midspan)	1.53	2.55	1.63	2.71	
Kaling racio	Pier B (Support)	1.51	1.95	1.10	1.83	
Rating Live Load (MS18) (Metic Tons		3	3.0			
Load Pating Calculations	Section C (Midspan)	50.4	84.1	53.6	89.5	
Load Kalling Calcolations	Pier B (Support)	49.8	64.3	36.2	60.5	

After confirmation of this sheet, click "NEXT" button then proceed directly to the next

Note						
Refere	nce	Refer to the manual calculation sheets as shown in the Appendix II "Load Rating Examples" page 242, 243 in the Manual for Load Rating of Bridges.				
Verifico	ation	Results of calculations should be verified.			ified.	
Input D	Data	Unnecessary.				
Differences compared with Simple PCDG		Load Rating calculations should be done not only at Midspan but also at Pier.				
		Rating Under Factor SLS (RF)	Compression	All Load	= 0.6 x f'c - (Fd + Fp + Fs) / Fl	
Applied	Rating Factor (RF)			Live Load	= 0.4 x f'c - 0.5 x (Fd + Fp + Fs) / Fl	
Equation			Tension		= 0.5 x sqrt (f'c) - (Fd + Fp + Fs) / Fl	
in Output		Under Strength Limit State			= (Φ x Rn - γD x DL) / (γLL x (LL + I))	
Load Rating (LR)			ating (LR)		LR = RF x 33.0 (Vehicle Weight)	

	C2.3 SUMM	ARY OF RATI	NG FACTO	DR AND L	OAD RATI	NG		
		T)	0.0	Sect	ion C	Pier Su	pport B	
VVe	eight of vehicle (Metric	c Ions)		RF	LR	RF	LR	
	Serviceschility	Comprossion	All Load	5.52	182.1	1.59	52.3	
Rating	Limit State	Compression	Live Load	4.24	140.0	1.29	42.5	
Factor	Elitin sidio	Allowable	Tension	2.10	69.2	4.95	163.2	
and		Moment	Inventory	1.53	50.4	1.51	49.8	
Load Rating Strength Lin	Strength Limit State	Momeni	Operating	2.55	84.1	1.95	64.3	
	Sirengin Linin Sidle	Shoar	Inventory	1.63	53.6	1.10	36.2	
		Shear	Operating	2.71	89.5	1.83	60.5	
/inimum l	linimum Rating Factor and Load Rating				50.4	1.10	36.2	
			R	eturn to (Click foll	GENERAL	e above ir	nstruction	
		Return to GENERAL			Acc GEN prod	ording to this scree gray co IERAL'' c ceed diu	o the Insi en, User H ploured c or "LOAD rectly to	truction showr have to click cell "Return to) POSTING", th the next scree

Sheet 8 (LRSUM) : Summary of Rating Factor and Load Rating

Note					
Reference	Refer to the manual calculation sheets as shown in the Appendix II "Load Rating Examples" page 242, 243 in the Manual for Load Rating of Bridges.				
Verification	Results of calculations should be verified.				
Input Data	Unnecessary.				
Differences compared with Simple PCDG	Load Rating calculations should be done not only at Midspan but also at Pier.				

Sheet 9 (POSTLR1): Posting Load Rating Calculations (1) D. LOAD POSTING BY LOAD FACTOR METHOD

D1. DEMAND FORCES FOR LOAD POSTING VEHICLES

D1. DEMAND FORCES FOR LOAD POSTING VEHICLES							
Conducting a Structural Analysis, the load demands for the PCDG should be obtained separately and input the necessary load demands in the Table below.							
Description Section C Pier Support B							
	Moment	Type 1-1	822.1	-448.7			
		Type 1-2	1219.9	-702.9			
Posting Vahiala Mamont and Shaar		Type 12-2	1447.3	-934.3			
Posting vehicle Moment and shed	Shear	Type 1-1	60.3	-123.2			
		Type 1-2	85.5	-191.8			
		Type 12-2	84.1	-248.8			

D2. POSTING RATING CALCULATIONS

D2.1 POSTING RATING BASED ON SERVICEABILITY LIMIT STATE								
(1) USING COMPRESSIVE STRESS								
Description		Section C	Pier Support B					
For Strength Factor		(0.6					
For Strength Factor		(0.4					
For Dead Load Factor		(0.5					
Concrete Compressive Stress			38					
Dead Load Stress		15.80	2.19					
Prestress after all losses		-7.13	8.48					
Secondary Prestress		0.00	0.00					
	Type 1-1	0.86	1.24					
Live Load stresses including Impact	Type 1-2	1.28	1.94					
	Type 12-2	1.52	2.58					
Using Compressive Stress	Type 1-1	16.38	9.79					
Using Compressive Stress	Type 1-2	11.04	6.25					
onder Air Lodd Combindhon	Type 12-2	9.31	4.70					
	Type 1-1	12.60	7.96					
Using Compressive Stress of Live Load	Type 1-2	8.49	5.08					
	Туре 12-2	7.16	3.82					
(2) USING ALLOWABLE TENSION STRESS								
Dead Load Stress		-17.27	-0.83					
Prestress after all losses		28.32	12.13					
Secondary Prestress		0.00	0.00					
	Type 1-1	-2.27	-0.47					
Live Load stresses including Impact	Type 1-2	-3.37	-0.74					
	Type 12-2	-4.00	-0.98					
	Type 1-1	6.23	30.54					
Using the Allowable Tension in Concrete	Type 1-2	4.20	19.50					
	Type 12-2	3.54	14.67					

After confirmation of this sheet, click "NEXT" button then proceed directly to the next

Note							
Refere	nce	Refer to the manual calculation sheets as shown in the Appendix II "Load Rating Examples" page 244, 245 in the Manual for Load Rating of Bridges.					
Verification Results of calculations should be verified.					ified.		
Input Data Load demands should be separately analyzed with appropriate structural Mo					y analyzed with appropriate structural Model.		
Differences of with Simple	compared le PCDG	Load Rating calculations should be done not only at Midspan but also at Pier.					
		tresses for Posting Live Load			= M / Sx (= Y / Iz x M)		
Applied	Rating Factor (RF)	Under SLS	Compression	All Load	= 0.6 x f'c - (Fd + Fp + Fs) / Fl		
in Output				Live Load	= 0.4 x f'c - 0.5 x (Fd + Fp + Fs) / Fl		
			Tension		= 0.5 x sqrt (f'c) - (Fd + Fp + Fs) / Fl		

Sheet 10 (POSTLR2): Posting Load Rating Calculations (2)

D2. LOAD RATING CALCULATIONS

D2.2 POSTING RATING BASED ON STRENGTH LIMIT STATE							
Dead Load Factor			ا	.3			
Live Load factor	Inventory		2	.17			
	Operating		1.3				
			ection C (at Midspan) Section B (Suppor				
		Moment	Shear	Moment	Shear		
Moment and Shear Capacity		14284	716	-8045	-1905		
Moment and Shear due to Dead Load		4174	0.00	0.00	-477		
Moment and Shear due to Superimposed Dead	d Load	595	0.00	-792.9	-136		
	Type 1-1	822	60	-449	-123		
Moment and Shear due to Live Load	Type 1-2	1220	86	-703	-192		
	Type 12-2	1447	84	-934	-249		

D2.3 POSTING RATING CALCULATIONS							
Description		Moment		Shear			
Description			Inventory	Operating	Inventory	Operating	
	Sa allara C	Type 1-1	4.53	7.57	5.47	9.13	
	(Midspap)	Type 1-2	3.05	5.10	3.86	6.44	
Pating Egotor	(Midspari)	Type 12-2	2.57	4.30	3.92	6.55	
Raing Paciol	D' D	Type 1-1	7.20	12.02	4.15	6.92	
	Pier B (Support)	Type 1-2	4.60	7.68	2.66	4.45	
		Type 12-2	3.46	5.77	2.05	3.43	
Portting Live Logd		Type 1-1	17.0				
(Metic Tops) Weight of	of vehicle	Type 1-2	27.0				
(Melle Toris)		Type 12-2	1-2 27.0 12-2 38.0				
	Section C	Type 1-1	77.0	128.6	93.0	155.2	
	(Midspan)	Type 1-2	82.5	137.7	104.2	173.9	
Load Pating Calculations	(Midspari)	Type 12-2	97.8	163.3	149.0	248.8	
Load Raing Calcolations	Dior P	Type 1-1	122.5	204.4	70.5	117.6	
	(Support)	Type 1-2	124.2	207.3	71.9	120.0	
	(300000)	Type 12-2	131.5	219.4	78.0	130.2	

After confirmation of this sheet, click "NEXT" button then proceed directly to the next

NEXT

		Note			
Reference	Refer to the manual calculation sheets as shown in the Appendix II "Load Rating Examples" page 246, 247 in the Manual for Load Rating of Bridges.				
Verification	Results of calculations should be verified.				
Input Data	Unnecessary.				
Differences compared with Simple PCDG	Load Rating calculations should be done not only at Midspan but also at Pier.				
Applied Equation	Rating Factor RF	$RF = (\Phi \times Rn - \gamma_{D} \times DL) / (\gamma_{LL} \times (LL + I))$			
in Output	Load Rating LR	LR = RF x (Each Posting Vehicle Weight)			

	D2 2 SUMAMA A PV					PATING	
	DZ.3 SUMMART	JFFOSIING	KATING P	Sect	ion C	Pier Su	pport B
				RF	LR	RF	LR
(1) POST	ING VEHICLE TYPE	1-1		Weight c	of Vehicle	17 (Meto	pric Tons)
	0	C	All Load	16.38	278.5	9.79	166.4
Rating	Serviceability	Compression	Live Load	12.60	214.1	7.96	135.3
Factor	Limit sidle	Allowable	Tension	6.23	105.9	30.54	519.3
and Load Rating			Inventory	4.53	77.0	7.20	122.5
		Moment	Operating	7.57	128.6	12.02	204.4
	Strength Limit State	Chan are	Inventory	5.47	93.0	4.15	70.5
		snear	Operating	9.13	155.2	6.92	117.6
Minimum Rating Factor and Load Rating				4.53	77.0	4.15	70.5
(2) POST	ING VEHICLE TYPE	1-2		Weight of Vehicle		27 (Metoric Tons)	
		- ·	All Load	11.04	298.1	6.25	168.7
Ratina	Limit State	Compression	Live Load	8.49	229.2	5.08	137.2
Factor		Allowable Tension		4.20	113.3	19.50	526.5
and		Moment	Inventory	3.05	82.5	4.60	124.2
Load	Church with Lineit Charte		Operating	5.10	137.7	7.68	207.3
Rating	sirengin Limit sidie	Shear	Inventory	3.86	104.2	2.66	71.9
		Snear	Operating	6.44	173.9	4.45	120.0
Minimum F	Rating Factor and Load	Rating		3.05	82.5	2.66	71.9
(3) POST	ING VEHICLE TYPE	12-2		Weight c	of Vehicle	38 (Metoric Tons)	
	Construction	Communication	All Load	9.31	353.7	4.70	178.6
Ratina	Serviceability	Compression	Live Load	7.16	271.9	3.82	145.3
Factor		Allowable	Tension	3.54	134.4	14.67	557.4
and		Managat	Inventory	2.57	97.8	3.46	131.5
Load	Chuon mile Lineit Charte	Moment	Operating	4.30	163.3	5.77	219.4
Rating	sirengin Limit state	Cheer	Inventory	3.92	149.0	2.05	78.0
		Snedr	Operating	6.55	248.8	3.43	130.2
Minimum F	Rating Factor and Load	Rating		2.57	97.8	2.05	78.0

Sheet 11 (POSTSUM): Summary of Posting Rating Factor and Load Rating

After confirmation of this sheet, click "NEXT" button then proceed directly to the next

	Note					
Reference	Refer to the manual calculation sheets as shown in the Appendix II "Load Rating Examples" page 246, 247 in the Manual for Load Rating of Bridges.					
Verification Results of calculations should be verified.						
Input Data	Unnecessary.					
Differences compared with Simple PCDG	Load Rating calculations should be done not only at Midspan but also at Pier.					

Sheet 12 (SUMMARY): Summary of Load Posting E. SUMMARY OF RESULTS FOR LOAD POSTING

SUMMARY OF RESULTS FOR LOAD POSTING								
	Vehicle	SECTION C		PIER SU	Load			
Vehicle Type	Weight (Metric Tons)	Rating Factor	Load Rating	Rating Factor	Load Rating	Posting (Tons)		
MS18	33.0	1.53	50.4	1.10	36.2	33T		
Type 1-1	17.0	4.53	77.0	4.15	70.5	171		
Type 1-2	27.0	3.05	82.5	2.66	71.9	27T		
Type 12-2	38.0	2.57	97.8	2.05	78.0	38T		

After confirmation of this sheet, click "END GO TO RC DECK SLAB" button then proceed directly to the next

END AND GO TO DECK SLAB

Note						
Reference	Refer to the manual calculation sheets as shown in the Appendix II "Load Rating Examples" page 247 in the Manual for Load Rating of Bridges.					
Verification	Results of calculations should be verified.					
Input Data	Unnecessary.					

6.5 SIG (Steel I Girder Bridge)

6.5.1 Simple SIG

Sheet 1 (GENERAL): Input Data of Bridge Description

			INTERIC	OR SIG S	SIMPLE					
A. GEN	IERAL							BACK	O MENU	
			A1. BRID	GE DESC	RIPTION					
Bridge Loc	cation	REGION	VII							
Bridge Na	me		MANANGA	ll Bridge						
Bridge	Simple or Cor	ntinuous	S	Steel I-Girc	der Bridge					
Туре	Number of Sp	an	4							
Bridge Wid	1th (curb to cu	rb) (m)	7.32							
Number of	f Lanes		2							
Bridge Ler	ngth (m)		35.000	35.000	35.000		35.000		=140.000m	
Year Built			1970							
	Nos. of Girde	r 	3	Multiple G	irder compo	site fo	r live lo	ad		
structure	Girder Spaci	ng (m)	3.200	on centers	5					
	Substructure		RC Canfile	ver Abutme	Ints					
Wearing	Thickness (mr	nj	50							
Course	material		Asphalt							
Material P	roperties		fc=	8.3	Мра		fs=	265.0	Мра	
			f'c=	20.7	Мра		fy=	482.0	Мра	
			Weight of k	parrier rail V	Vbr =		4.600	KN/m		
Assumptio	n		Concrete l	Jnit Weight	Wu =		24.0	KN/m ³		
/ 030110110			Steel Girde	r Unit Weigł	nt Ws =		77.0	KN/m ³		
			Asphalt Uni	t Weight Wo	a =		22.0	KN/m ³		
Others			Rating Live Load is AASHTO MS18 (HS20-44)							
			1			1			NEXT	
Material	Year of	f'c or fy		tc or ts			Aft	er conf	irmation (of this :
	Prior to 1905	179.3	inventory 94.5	Operating	Posting 94.5	-		click "I	VEXT" but	ton the
Structural	1905 to 1924	204.9	110.3	155.1	110.3	-	l c	roceed	directly	to the
Steel	1903 10 1936	200.0	124.1	120.0	1241	-			/	-
Bending	after 1942	240.0	124.1	100.7	124.1					
	Brier to 1905	170.2	F0 /	70.2	137.7	-				
Structural	1905 to 1924	204.9	25.5	/7.3	25.5	-				
Steel	1903 10 1936	200.0	75.0	73.1	75.0	-				
Shear	1736 10 1963	227.5	/5.8	103.4	/3.8	-				
onoui		248.2	82./	110.3	82./	-				
	Prior to 1954	227.5	124.1	1/2.4	124.1	-				
Rebar	after 1954	2/5.8	137.9	193.1	137.9					
	Grade 50	344./	189.8	224.1	137.9	*pc				
	Grade 60	413.7	227.5	248.2	165.5	⁺pc				
	Prior to 1959	17.2	6.9	10.3	6.9	-	*.		rostrosso	d Con
Concrete	after 1959	20.7	8.3	13.1	8.3				1021102200	
	1977 to 1981	27.6	11.0	16.5	11.0	*pc				
	after 1981	31.0	12.4	18.6	12.4	*pc				

Note							
Input Data	Light blue cells should be filled up.						
Material Properties	It should be taken from GENERAL NOTE in the as built drawings or in the Standard Bridge Design. In case of non-availability of data, It should be taken based on the Bridge Year Built. (refer to Table shown in the above Table)						

Sheet 2 (LAYOUT) : Input a Bridge Layout and Dimension for Load Rating

A2. BRIDGE LAYOUT AND DIMENSION

		GII								
SECTION	SECTION A (A	At Support)	SECTION B	(Dummy)	SECTION C (/	At Midspan)	* Only figure should be give			
Location (m)	0.01	10	1.000		17.500		17.500		(in case of this	screen, give
Dimension	b (m)	h (m)	b (m)	h (m)	<u>b (m)</u>	h (m)	the "0.180" onl	y)		
Clark			thickness	= 0.180 m						
adic	0.320	0.180	0.320	0.180	0.320	0.180	*10 (Modular Ratio)			
1.161	0.240	0.010	0.280	0.019	0.300	0.022				
Utig	0.000	0.000	0.000	0.000	0.000	0.000				
14/-1-	0.009	1.800	0.009	1.800	0.009	1.800				
Web	0.000	0.000	0.000	0.000	0.000	0.000				
1.61	0.280	0.010	0.280	0.022	0.370	0.025				
Lrig	0.000	0.000	0.000	0.000	0.000	0.000				
Length	6.10	00	14.	200	13.9	00				

After confirmation of this sheet, click "NEXT" button then proceed directly to the next

Note							
	Light blue cells should be filled up, these are;						
	- Location of objective section						
Input Data	- Slab Dimension : Slab Thickness (Only figure should be given)						
	- Girder Dimension : Width and Height for Upper/Lower Flange and Web						
	- Length of objective section						
Drawings	ngs Drawings (Elevation, Cross Section and Steel Girder Details) for the objective bridge should be prepared as shown in this screen.						

Sheet 3 (DFDLLL): Demand Forces Calculations

B. DEMAND FORCES

B.1 INPUT AND SECTION PROPERTIES

BO. INPUT	
Slab thickness ts (m)	0.180
Slab width ws (m)	3.200
Span Length L(m)	35.000

B1. PROPERTIES OF STEEL GIRDER SECTIONS								
(1) UNDER DEAD LOAD (NON-COMPOSIE GIRDER)								
SECTION	Total Area	Web Area	Iz (m ⁴)	Y _b (m)	Y _t (m)	S _{xb} (m ³)	S _{xt} (m ³)	
A (At Support)	0.02140	0.01620	0.00863	0.89308	0.92692	0.00966	0.00931	
B (Dummy)	0.02768	0.01620	0.01387	0.89407	0.94693	0.01551	0.01464	
C (At Midspan)	0.03205	0.01620	0.01737	0.84924	0.99776	0.02045	0.01741	
(2) UNDER SUPERI/	MPOSED D	EAD LOAD	AND LIVE	LOAD (C	OMPOSIE	GIRDER)		
A (At Support)	0.07900	0.01620	0.02492	1.63453	0.18547	0.01524	0.13435	
B (Dummy)	0.08528	0.01620	0.03412	1.59443	0.24657	0.02140	0.13840	
C (At Midspan)	0.08965	0.01620	0.04189	1.54813	0.29887	0.02706	0.14016	

Standard Section Area of "SECTION A"	
Original Section Area (m ²)	0.0214

B.2 DEAD LOAD CALCULATIONS

B2. DEAD LOAD CALCULATIONS						
		Section A (At Support)	0.287			
	Self-weight of Girder	Section B (Dummy)	0.865			
		Section C (At Midspan)	0.980			
		Stiffener and Bracing	0.267			
Uniformal and non-matter of Circler (K) (m)	Slab Weight	Continuous	13.824			
Uniform Load per meter of Girder (KN/M)	Barrier Rail	Barrier Rail				
	Asphalt Overlay	3.520				
	Total Load	22.809				
	Total DeadLoad	16.223				
	Total Superimposed D	6.587				
Doad Load	Moment (KN-m/m)	M _{DL}	2484.1			
Dedd Lodd	Shear (KN)	V _{DL}	283.9			
Superimpered Dead Load	Moment (KN-m/m)	M _{DL}	1008.6			
Sobelimbosed Dedd Lodd	Shear (KN)	V _{DL}	115.3			
After confirmation of this sheet,						

click "NEXT" button then proceed directly to the next

Note							
Reference	Refer to the manual calculation sheets as shown in the Appendix II "Load Rating Examples" page 258 in the Manual for Load Rating of Bridges.						
Verification	Results of c	Results of calculations should be verified.					
Input Data	Original section area of section "A" should be given. This data is prepared in case section losses are observed in steel girder.						
live Logd Forces	They are calculated besed on the Load Rating Manual Appendix III						
Live Load Forces	(refer to To	(refer to Table shown in the next pages of this Sheet 3)					
Applied Equation	Dood	Uniform Load W _{DL}	= A x W				
in Output	Load	M _{DL}	$= 1/8 \times W_{DL} \times L^2$				
	2000	V _{DL}	$= 1/2 \times W_{DL} \times L$				

Sheet 4 (DSDLLL): Demand Forces and Stresses Calculations

B3. LIVE LOAD CALCULATIONS

B3. LIVE-LOAD CALCULATIONS						
LIVE-LOAD Type	MS18(HS20)					
Number of live load wheel line	1.750					
Impact factor	0.209	INPUT FOR LIVE LOAD				
span	35.00					
without Impact				819.75		
Max.M318 moment for 35.00m span	Max.MS18 moment for 35.00m span /wheel line with Impact M _{LL} 1733.6					
Max.MS18 shear at a distance "d"		without Impact	VL	143.49		
from the support/wheel line		with Impact	V _{LL}	303.46		

B4. LOAD DEMANDS ON DIFFERENT SECTIONS OF STEEL GIRDER

B4. LOAD DEMAND MIDSPAN AND SUPPORT OF STEEL GIRDER							
Logding	At Support	Section B (Dummy)	At Midspan				
Lodding	0.01m	1.00m	17.50m				
Dead load moments, KN-m	2.8	275.8	2484.1				
Dead load shears, KN	283.7	267.7	0.0				
SDL moments, KN-m	1.2	112.0	1008.58				
SDL shears, KN	115.2	108.7	0.0				
LL moment + Impact, KN-m	3.1	305.0	1733.6				
LL shear + Impact, KN	314.7	305.0	118.7				

B5. LOAD STRESS CALCULATIONS

	ESTIMATE	D STRESS DEMANDS	AT GIRDER SECTION	S
Loading	Location	At Support	Section B (Dummy)	At Midspan
DI momont	Тор	0.30	18.83	142.69
DEMOMENT	Bottom	-0.29	-17.78	-121.45
SDI momont	Тор	0.01	0.81	7.20
3DE MOMENI	Bottom	-0.08	-5.23	-37.27
II+I moment a t	Тор	0.02	2.20	12.37
LL+I MOMENI, 0 LL+I	Bottom	-0.21	-14.25	-64.07
DL shear, v _{DL}		17.51	16.52	0.00
SDL shear, v _{SDL}		7.11	6.71	0.00
LL+I shear, v_{LL+I}		19.42	18.83	7.33

After confirmation of this sheet, click "NEXT" button then proceed directly to the next

		Note			
Reference	Refer to the Rating Exa	e manual calculation s mples" page 259, 260 ir	heets as shown in the Appendix II "Load In the Manual for Load Rating of Bridges.		
Verification	Results of calculations should be verified.				
Input Data	Unnecessary.				
Live Load Forces	They are c (refer to To	alculated based on the	e Load Rating Manual Appendix III pages of this Sheet 3)		
		ML	Refer to Load Rating Manual Appendix III		
	Live	MLL	= ML x D.F x Impact		
Applied Equation	Load	VL	Refer to Load Rating Manual Appendix III		
in Output		VLL	= ML x D.F x Impact		
	Stresses	Moment	= M / Sx (= Y / Iz x M)		
	31103303	Shear	= (Shear forces) / (Web Area)		

Sheet 5 (LRASM): Load Rating Calculations by ASM C. LOAD RATING BY ALLOWABLE STRESS METHOD

C1. ALLOWABLE STRESS CALCULATIONS

C.1.1 ALLOWABLE STRESSES FOR CONCRETE AND STEEL					
	Conoroto	Allowable Stress	fc	8.3	
Material Properties	Concrete	Strength	f'c	20.7	
(Mpa)	Pobar	Allowable Stress	fs	265.0	
	Repui	Strength	fy	482.0	
C.1.2	COMPRES	SION AND TENSILE	STRESSES		
	strong	In	ventory	265.0	
Allowable compressive	9 211 622	Ot	perating	361.5	
Allowable tensile stress		In	ventory	265.0	
	C.1.3 ALLC	WABLE SHEAR STR	ESS		
Allowable Shear Stress		In	ventory	160.7	
Allowable shear shess		Ot	perating	216.9	

C2. LOAD RATING CALCULATIONS

	C2.1 RATING FACTO	R CALCULATIONS U	JSING ASM
Section	Description	Inventory	Operating
	Stress at Top Fiber	11301.38	15421.66
At	Stress at Bottom Fiber	1282.08	1749.61
Soppon	Shear	7.01	9.90
5	Stress at Top Fiber	111.34	155.14
B (Dummy)	Stress at Bottom Fiber	16.98	23.75
(Donniny)	Shear	7.30	10.29
	Stress at Top Fiber	9.31	17.11
At	Stress at Bottom Fiber	1.66	3.17
muspun	Shear	21.94	29.61

	C2.2 LOAD R	ATING CA	LCULATIC	DNS		
Section	Description	Rating Li	ve Load (M	etric Tons)	33.0	
Section	Description	Inve	ntory	Operating		
At	Moment	1282.08	42308.7	1749.61	57737.0	
Support	Shear	7.01	231.2	9.90	326.7	
В	Moment	16.98	560.4	23.75	783.9	
(Dummy)	Shear	7.30	241.0	10.29	339.5	
At	Moment	1.66	54.7	3.17	104.4	
Midspan	Shear	21.94	723.9	29.61	977.1	

Depend on the minimum value of Rating Factor > 1 or <1 , instruction in the below cell is automatically shown

Return to GENERAL

Click following the above instruction

Return to GENERAL

Load Posting

According to the Instruction shown in this screen, User have to click a gray coloured cell "Return to GENERAL" or "LOAD POSTING", then proceed directly to the next screen.

		Note
Reference	Refer to the manual c Rating Examples" pag	alculation sheets as shown in the Appendix II "Load e 260, 261 in the Manual for Load Rating of Bridges.
Verification	Results of calculations	should be verified.
Input Data	Allowable compressio and operating should	n stress, tensile stress and shear stress under inventory be given.
Applied Equation	Rating Factor RF	$RF = (\Phi \times Rn - \gamma_{D} \times DL) / (\gamma_{LL} \times (LL + I))$
in Output	Load Rating LR	LR = RF x 33.0 (Vehicle Weight)

Sheet 6 (POSTLL): Demand Forces and Stresses Calculations for Load Posting Vehicles (Type 1-1, Type 1-2 and Type 12-2)

D. LOAD POSTING BY ALLOWABLE STRESS (ASM)

D1. DEMAND FORCES FOR LOAD POSTING VEHICLES

D1.1 DEMAI		S FOR LOAD POSTIN		
(1) POSTING VEHICLE Type	1-1			
LIVE-LOAD Type	Type1-1			
Number of live load wheel line	1.750			
Impact factor	0.209			
span	35.00			
Turne 1.1 means ant fax 25 00m an an	Aubeelline	without Impact	ML	695.45
Type 1-1 moment for 55.00m span	/wheer inte	with Impact	M _{LL}	1470.77
Type 1-1 shear at a distance "d"		without Impact	VL	80.64
from the support/wheel line		with Impact	V _{LL}	170.54
(2) POSTING VEHICLE Type	1-2			
LIVE-LOAD Type	Type1-2			
Turne 1.0 memory for 25 00m and m	Aubeelline	without Impact	ML	1036.00
Type 1-2 moment for 55.00m span	/wheer line	with Impact	MLL	2190.98
Type 1-2 shear at a distance "d"		without Impact	VL	120.43
from the support/wheel line		with Impact	V _{LL}	254.69
(3) POSTING VEHICLE Type	12-2			
LIVE-LOAD Type	Type12-2			
Turne 10.0 means ont for 35.00m an an	(uda a l lina	without Impact	ML	1261.27
Type 12-2 moment for 55.00m span (wheeline	with Impact	MLL	2667.39
Type 12-2 shear at a distance "d"		without Impact	VL	144.01
from the support/wheel line		with Impact	V _{LL}	304.56

D1.2 POSTING VEHICLE DEMAND FORCES AT MIDSPAN, SUPPORT

		At	B	At
Posting Vehicle	Demand Forces	Support	(Dummy)	Midspan
		0.01m	1.00m	17.50m
Turce L L	Moment	1.72	167.24	1470.77
Type 1-1	Shear	172.24	167.24	83.99
Turne 1.0	Moment	2.62	254.05	2190.98
Type 1-2	Shear	261.98	254.05	121.95
Turne 10.0	Moment	3.30	319.22	2667.39
Type 12-2	Shear	330.38	319.22	133.28

D1.3 POSTING VEHICLE DEMAND STRESSES AT MIDSPAN, SUPPORT

Posting	y Vehicle	Demand Forces	At Support	B (Dummy)	At Midspan
		Top Fiber	0.01	1.21	10.49
Тур	e 1-1	Bottom Fiber	-0.11	-7.81	-54.35
		Shear	10.63	10.32	5.18
		Top Fiber	0.02	1.84	15.63
Тур	e 1-2	Bottom Fiber	-0.17	-11.87	-80.97
		Shear	16.17	15.68	7.53
		Top Fiber	0.02	2.31	19.03
Туре	e 12-2	Bottom Fiber	-0.22	-14.92	-98.58
		Shoar	20.30	10.70	0.73

NEXT

After confirmation of this sheet, click "NEXT" button then proceed directly to the next

		Note		
Reference	Refer to the Rating Exa	e manual calculation s mples" page 262 in the	heets as shown in the Appendix II "Load Manual for Load Rating of Bridges.	
Verification	Results of calculations should be verified.			
Input Data	Unnecessary.			
Posting Live Load	They are c	alculated besed on the	e Load Rating Manual Appendix III.	
Forces	(refer to To	able shown in the next	pages of this Sheet 6)	
		ML	Refer to Load Rating Manual Appendix III	
	Posting	MLL	= ML x D.F x Impact	
Applied Equation	Live	VL	Refer to Load Rating Manual Appendix III	
in Output		VLL	= ML x D.F x Impact	
	Strassas	Moment	= M / Sx (= Y / Iz x M)	
	21162262	Shear	= (Shear forces) / (Web Area)	

Sheet 7 (POSTLFM): Posting Rating Calculations

E1. LOA	AD POSTIN	IG RATIN	IG FACT	OR CAL	CULATIO	NS (1)	
Posting Vob	iolo	At Su	pprot	B (Du	mmy)	At Mi	dspan
Fosing ven	CIE	Inventory	Operating	Inventory	Operating	Inventory	Operating
	Top Fiber	19138.80	26666.17	203.04	282.89	10.97	20.17
Type 1-1	Bott Fiber	2141.82	2995.94	30.97	43.32	1.96	3.73
	Shear	12.80	18.08	13.32	18.76	31.00	41.84
	Top Fiber	12582.61	17531.41	133.66	21.80	7.36	13.54
Type 1-2	Bott Fiber	1408.12	1969.65	20.39	28.51	1.31	2.50
	Shear	8.41	11.89	8.77	12.35	21.35	28.81
	Top Fiber	9977.65	13901.90	106.37	148.21	6.05	11.12
Type 12-2	Bott Fiber	1116.60	1561.88	16.22	22.69	1.08	2.06
	Shear	6.67	9.43	6.98	9.83	19.53	26.36

E. POSTING LOAD RATING FACTOR CALCULATIONS

									-	
		E2. LOA	D POSTI	NG RATI	NG FAC	TORCA	CULATIC	ONS (2)		
	Vehicle		Inven	tory			Oper	rating		Postina
Vehicle	Weight	Morr	nent	She	ear	Mor	nent	Sh	ear	(Metric
Type	Tons)	RF	LR	RF	LR	RF	LR	RF	LR	Tons)
(1) AT S	UPPORT						2.1			
MS18	33.0	1,282.08	42308.7	7.01	231.2	1,749.61	57737.0	9.90	326.7	33
Type 1-1	17.0	2,141.82	36410.9	12.80	217.6	2,995.94	50931.0	18.08	307.4	17
Type 1-2	27.0	1,408.12	38019.1	8.41	227.2	1,969.65	53180.5	11.89	321.0	27
Type 12-2	38.0	1,116.60	42430.6	6.67	253.6	1,561.88	59351.3	9.43	358.3	38
(2) SECT	ION B (I	Dummy)								
MS18	33.0	16.98	560.4	7.30	241.0	23.75	783.9	10.29	339.5	33
Type 1-1	17.0	30.97	526.4	13.32	226.4	43.32	736.4	18.76	318.9	17
Type 1-2	27.0	20.39	550.4	8.77	236.7	21.80	588.6	12.35	333.4	27
Type 12-2	38.0	16.22	616.5	6.98	265.1	22.69	862.3	9.83	373.5	38
(3) AT N	IDSPAN	-								
MS18	33.0	1.66	54.7	21.94	723.9	3.17	104.4	29.61	977.1	33
Type 1-1	17.0	1.96	33.2	31.00	526.9	3.73	63.4	41.84	711.2	17
Type 1-2	27.0	1.31	35.4	21.35	576.4	2.50	67.6	28.81	778.0	27
Type 12-2	38.0	1.08	41.0	19.53	742.2	2.06	78.2	26.36	1001.8	38
									Load	Posting
									MS18	331
		ſ	104)				Type 1-1	271
			LUA						Type 1-2	38T
			LIM	IT					Type 12-2	501
]	Aftor	onfirm	ation of	f this sh
				17T						
			•·· •				GO	IO RC	DECK S	SLAB. K
			<u>د ک</u>	271			prod	ceed c	lirectly t	to the r
				271		l	-			
				381						
				, 301					10 DLCI	(JLAD

Note						
Reference	Refer to the manual calculation sheets as shown in the Appendix II "Load Rating Examples" page 263 in the Manual for Load Rating of Bridges.					
Verification	Results of calculations should be verified.					
Input Data	Unnecessary.					
Applied Equation	Rating Factor RF	$RF = (\Phi x Rn - \gamma_D x DL) / (\gamma_{LL} x (LL + 1))$ $\alpha = (As' * fy) / (0.85 * f'c * beff)$				
	Load Rating LR	LR = RF x (Vehicle Weight)				

6.5.2 Continuous SIG

Sheet 1 (GENERAL): Input Data of Bridge Description

INTERIOR SIG CONTINUOUS

A. GENERAL

BACK TO MENU

A1. BRIDGE DESCRIPTION								
Bridge Loc	Bridge Location REGION							
Bridge Na	me							
Bridge	Simple or Cor	itinuous	С	Steel I-Girc	ler Bridge			
Туре	Number of Sp	an	2					
Bridge Wid	Ith (curb to cu	rb) (m)	24.00					
Number of	f Lanes		6				-	
Bridge Len	igth (m)		27.000	27.000				=54.000m
Year Built	-		1967					
	Nos. of Girde	r	13	Multiple Girder composite for live load				
Structure	Girder Spacir	ng (m)	2.020	on centers				
	Substructure		Wall Type RC Pier and RC Cantilever Abutments					
Wearing	thickness (mr	n)	50					
Course	material		Asphalt					
Matorial P	roportion		fc=	8.3	Мра	fs=	137.9	Мра
Material F	lopernes		f'c=	20.7	Мра	fy=	248.2	Мра
			Weight of k	oarrier rail V	Vbr =	3.600	KN/m	
		Concrete l	Jnit Weight	Wu =	24.0) KN/m ³		
Assumptio	n		Steel Girde	r Unit Weigł	nt Ws =	77.0) KN/m ³	
			Asphalt Uni	t Weight Wo	= c	22.0	0 KN/m ³	
Others			Rating Live	Load is AAS	Shto MS18 (H	S20-44)		

NEXT

Matorial	Year of	foorfu		fc or fs	
Material	Construction	I C OF IY	Inventory	Operating	Posting
	Prior to 1905	179.3	96.5	134.4	96.5
Structural	1905 to 1936	206.8	110.3	155.1	110.3
Bending	1936 to 1963	227.5	124.1	168.9	124.1
bending	after 1963	248.2	137.9	186.2	137.9
Structural	Prior to 1905	179.3	58.6	79.3	58.6
Steel	1905 to 1936	206.8	65.5	93.1	65.5
Web	1936 to 1963	227.5	75.8	103.4	75.8
Shear	after 1963	248.2	82.7	110.3	82.7
	Prior to 1954	227.5	124.1	172.4	124.1
Deber	after 1954	275.8	137.9	193.1	137.9
Repai	Grade 50	344.7	189.8	224.1	137.9
	Grade 60	413.7	227.5	248.2	165.5
	Prior to 1959	17.2	6.9	10.3	6.9
Concrete	after 1959	20.7	8.3	13.1	8.3
Concrete	1977 to 1981	27.6	11.0	16.5	11.0
	after 1981	31.0	12.4	18.6	12.4

After confirmation of this sheet, click "NEXT" button then proceed directly to the next

*pc: for Prestressed Concrete

Note					
Input Data	Light blue cells should be filled up.				
Differences compared with Simple SIG	Simple or Continuous, Number of Span and Bridge Length.				
Material Properties	It should be taken from GENERAL NOTE in the as built drawings or in the Standard Bridge Design. In case of non-availability of data, It should be taken based on the Bridge Year Built. (refer to Table shown in the above Table)				

Sheet 2 (LAYOUT) : Input a Bridge Layout and Dimension for Load Rating

A2. BRIDGE LAYOUT AND SECTION

GIRDER SECTION								* ~ + "	
SECTION	SECTION A	SECTION A (At Pier)		SECTION B (Dummy) SECTION C (At Mid		SECTION C (At Midspan)		* Only figure s	should be given
Location (m)	0.01	0.010		1.000		13.500		(in case of thi the "0 170" or	s screen, give hlv)
Dimension	b (m)	h (m)	b (m)	h (m)	b (m)	h (m)			
Clark			thickness =	0.170 m 🕯			1		
SIGD	0.202	0.170	0.202	0.170	0.202	0.170		*10 (Modular Ratio)	
1161	0.300	0.062	0.300	0.029	0.300	0.022			
Urig	0.000	0.000	0.000	0.000	0.000	0.000			
	0.010	0.810	0.010	0.810	0.010	0.810			
vvep	0.000	0.000	0.000	0.000	0.000	0.000			
	0.300	0.062	0.300	0.032	0.300	0.051			
LTIG	0.000	0.000	0.000	0.000	0.000	0.000			
Length	2.70	00	2.7	00	16.2	00			

After confirmation of this sheet, click "NEXT" button then proceed directly to the next

Note					
	Light blue cells should be filled up, these are;				
	- Location of objective section				
Input Data	- Slab Dimension : Slab Thickness (Only figure should be given)				
	- Girder Dimension : Width and Height for Upper/Lower Flange and Web				
	- Length of objective section				
Differences compared with Simple SIG	Drawing of Bridge Elevation.				
Drawings	Drawings (Elevation, Cross Section and Steel Girder Details) for the objective				
	bridge should be prepared as shown in this screen.				

Sheet 3 (DFDLLL): Demand Forces Calculations

B. DEMAND FORCES

B.1 INPUT AND SECTION PROPERTIES

Slab thick	Slab thickness ts (m)							
Slab width	Slab width ws (m)							
Span Leng	gth L(m)			27.000				
	B1. PROPERTIES OF STEEL GIRDER SECTIONS							
(1) UNDER DEAD L	OAD (NO	N-COMPO	SIE GIRDE	R)				
SECTION	Total Area	Web Area	lz (m ⁴)	Y _b (m)	Y _t (m)	S _{xb} (m ³)	S _{xt} (m ³)	
A (At Pier)	0.04490	0.00770	0.00750	0.46700	0.46700	0.01607	0.01607	
B (Dummy)	0.02600	0.00770	0.00365	0.42192	0.44908	0.00865	0.00813	
C (At Midspan)	0.02960	0.00770	0.00390	0.32621	0.55679	0.01197	0.00701	
(2) UNDER SUPERI	MPOSED D	EAD LOAD	AND LIVE	LOAD (C	OMPOSIE	GIRDER)		
A (At Pier)	0.07924	0.00770	0.01352	0.70623	0.22777	0.01914	0.05934	
B (Dummy)	0.06034	0.00770	0.00795	0.72590	0.14510	0.01095	0.05480	
C (At Midspan)	0.06394	0.00770	0.01053	0.67092	0.21208	0.01570	0.04967	
	Standard Section Area of "SECTION A"							
	Original Sec	tion Area (m ²	2)		0.0449			

B.2 LOAD DEMAND CALCULATIONS

B2.1 DEAD LOAD CALCULATIONS							
		Section A (At Pier)	0.691				
	Salf waight of Circles	Section B (Dummy)	0.400				
	Sell-weight of Girder	Section C (At Midspar	1.367				
		Stiffener and Bracing	0.307				
Uniform Lond permater of Circler (K) (m)	Slab Weight	Continuous	8.242				
Unitorm Load per meter of Girder (KN/m)	Barrier Rail		0.554				
	Asphalt Overlay		2.222				
	Total Load		13.784				
	Total DeadLoad		11.008				
	Total Superimposed [2.776					
	R2 2 LOAD DEMAND MIDSPAN AND SUPPORT OF STEEL CIRDER						
B2.2 LOAD DEMAND MID	SPAN AND SUPPORT	OF STEEL GIRDER					
B2.2 LOAD DEMAND MID Conducting a Structural Analysis, th separately and input the nec	SPAN AND SUPPORT e load demands for essary load deman	OF STEEL GIRDER the SPG should be ds in the Table belo	obtained w.				
B2.2 LOAD DEMAND MID Conducting a Structural Analysis, th separately and input the nec	SPAN AND SUPPORT e load demands for essary load deman At M	OF STEEL GIRDER the SPG should be ds in the Table belo idspan At Pier	obtained w. Support				
B2.2 LOAD DEMAND MID Conducting a Structural Analysis, th separately and input the nec Description	SPAN AND SUPPORT e load demands for essary load deman At M	OF STEEL GIRDER the SPG should be ds in the Table belo idspan At Pier 2.8 m 27	obtained w. Support				
B2.2 LOAD DEMAND MID Conducting a Structural Analysis, th separately and input the nec Description Dead load moments, KN-m	SPAN AND SUPPORT e load demands for essary load deman At M 10 54	OF STEEL GIRDER the SPG should be ds in the Table belo ldspan At Pier .8 m 27 6.52 -101	obtained w. Support .0 m 16.85				
B2.2 LOAD DEMAND MID Conducting a Structural Analysis, th separately and input the nec Description Dead load moments, KN-m Dead load shears, KN	SPAN AND SUPPORT e load demands for essary load deman At M 10 54	OF STEEL GIRDER the SPG should be ds in the Table belo idspan At Pier 0.8 m 27 6.52 -100 4.24 -18	obtained w. Support .0 m 16.85 4.41				
B2.2 LOAD DEMAND MID Conducting a Structural Analysis, th separately and input the nec Description Dead load moments, KN-m Dead load shears, KN Additional Dead load moments, KN-m	SPAN AND SUPPORT e load demands for essary load deman At M 10 54 	OF STEEL GIRDER the SPG should be ds in the Table belo idspan At Pier 0.8 m 27 6.52 -101 1.24 -18 7.65 -51	obtained w. Support .0 m 16.85 4.41 1.45				
B2.2 LOAD DEMAND MID Conducting a Structural Analysis, th separately and input the nec Description Dead load moments, KN-m Dead load shears, KN Additional Dead load moments, KN-m Additional Dead load shears, KN	SPAN AND SUPPORT e load demands for essary load deman At M 10 54 	OF STEEL GIRDER the SPG should be ds in the Table below idspan At Pier 0.8 m 27 6.52 -101 4.24 -18 7.65 -55 0.21 -9	obtained w. Support .0 m 16.85 4.41 1.45 .93				
B2.2 LOAD DEMAND MID Conducting a Structural Analysis, th separately and input the nec Description Dead load moments, KN-m Dead load shears, KN Additional Dead load moments, KN-m Additional Dead load shears, KN MS18 max. positive moment, KN-m	SPAN AND SUPPORT e load demands for essary load deman At M 10 54 -4 2 2 -4 10	OF STEEL GIRDER the SPG should be ds in the Table belo idspan At Pier 0.8 m 27 6.52 -101 4.24 -18 7.65 -57 0.21 -9 50.52 0.0	obtained w. Support 0.0 m 16.85 4.41 1.45 .93 00				
B2.2 LOAD DEMAND MID Conducting a Structural Analysis, th separately and input the nec Description Dead load moments, KN-m Additional Dead load moments, KN-m Additional Dead load shears, KN MS18 max. positive moment, KN-m	SPAN AND SUPPORT e load demands for essary load deman At M 10 54 -4 22 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4	OF STEEL GIRDER the SPG should be ds in the Table belo idspan At Pier 0.8 m 27 6.52 -101 1.24 -18 7.65 -55 0.21 -9 50.52 0.0 73.15 -95	obtained w. Support 0 m 16.85 4.41 1.45 .93 00 7.00				
B2.2 LOAD DEMAND MID Conducting a Structural Analysis, th separately and input the nec Description Dead load moments, KN-m Dead load shears, KN Additional Dead load moments, KN-m Additional Dead load shears, KN MS18 max. positive moment, KN-m MS18 max. positive shear force, KN	SPAN AND SUPPORT e load demands for essary load deman At M 10 54 2 2 2 4 2 2 3 4 4 2 2 3 4 4 2 2 3 4 4 2 2 4 4 2 2 4 2 2 4 2 2 4 2 2 3 2 2 2 3 2 2 2 3 2 2 2 3 2 2 2 3 2 2 2 2 2 3 2 2 2 2 3 2	OF STEEL GIRDER the SPG should be ds in the Table below idspan At Pier .8 m 27 6.52 -100 4.24 -18 7.65 -51 0.21 -9 50.52 00 3.15 -95 3.28 0	obtained w. Support 0.0 m 6.85 4.41 1.45 .93 .00 7.00 00				

After confirmation of this sheet, click "NEXT" button then proceed directly to the next

Note				
Reference	Refer to the manual calculation sheets as shown in the Appendix II "Load Rating Examples" page 272, 273 in the Manual for Load Rating of Bridges.			
Verification	Results of calculations should be verified.			
Input Data	Original section area of section "A" should be given. This data is prepared in case section losses are observed in steel girder. Load Demands on continuous bridge should be given.			
Differences compared with Simple SIG	Load demands should be separately analyzed with appropriate structural Model.			

Sheet 4 (DSDLLL): Demand Forces and Stresses Calculations

B3. LOAD STRESS CALCULATIONS

B1. PROPERTIES OF STEEL GIRDER SECTIONS								
(1) At Midspan	(1) At Midspan							
	Total Area	Web Area	Iz (m ⁴)	Y _b (m)	Y _t (m)	S _{xb} (m ³)	S _{xt} (m ³)	
For Dead Load	0.02960	0.00770	0.00390	0.32621	0.55679	0.01197	0.00701	
For Add.DL and Live Load	0.06394	0.00770	0.01053	0.67092	0.21208	0.01570	0.04967	
(2) At Pier Support								
For Dead Load	0.04490	0.00770	0.00750	0.46700	0.46700	0.01607	0.01607	
For Add.DL and Live Load	0.07924	0.00770	0.01352	0.70623	0.22777	0.01914	0.05934	

ESTIMATED STRESS DEMANDS AT GIRDER SECTIONS						
Loading	Location	At Midspan	At Pier Support			
DI momont	Тор	77.95	-63.28			
DEmoniem	Bottom	-45.67	63.28			
SDI memorit	Тор	0.56	-0.87			
SDL moment	Bottom	-1.76	2.69			
LL+I moment, $\sigma_{\text{LL+I}}^{\dagger}$ Top Bottom		21.35	-16.13			
		-67.55	50.01			
DL shear, v _{DL}		0.55	23.96			
SDL shear, v _{SDL}		0.03	1.29			
LL+I shear, v _{LL+I}		10.82	25.78			

After confirmation of this sheet, click "NEXT" button then proceed directly to the next

Note					
Reference	Refer to th Rating Exa	Refer to the manual calculation sheets as shown in the Appendix II "Load Rating Examples" page 273, 274in the Manual for Load Rating of Bridges.			
Verification	Results of a	calculations should be	verified.		
Input Data	Unnecesso	ary.			
Differences compared with Simple SIG	Load Rating calculations should be done not only at Midspan but also at Pier.				
Applied Equation	Strassas	Moment	$= M / Sx (= Y / Iz \times M)$		
in Output	31163363	Shear	= (Shear forces) / (Web Area)		

C. LOAD RATING BY ALLOWABLE STRESS METHOD

C1. ALLOWABLE STRESS CALCULATIONS

C.1.1 ALLOWABLE STRESSES FOR CONCRETE AND STEEL						
	Conorato	Allowable Str	ess fc	8.3		
Material Properties (Mpa)	Concrete	Strength	f'c = fc/0.4	20.7		
	Pobar	Allowable Str	ess fs	137.9		
	Repai	Strength	fy = fs/0.55	248.2		
C.1.2 COMPRESSION AND TENSILE STRESSES						
			Inventory	137.9		
Allowable compressiv	e siless		Operating	186.2		
Allowable tensile stress			Inventory	137.9		
C.1.3 ALLOWABLE SHEAR STRESS						
Allowable Shear Stree	c		Inventory fy/3	82.7		
Allowable shear stress						

C2. LOAD RATING CALCULATIONS

C2.1 RATING FACTOR CALCULATIONS USING ASM						
Section	Description	Inve	ntory	Operating		
	Stress at Top Fiber	2.	78	5.0	4	
At	Stress at Bottom Fiber	1.	34	2.0	5	
muspun	Shear	7.	59	10.1	14	
At	Stress at Top Fiber	4.	57	7.5	7	
Pier	Stress at Bottom Fiber	1.	44	2.40		
Support	Shear	ear 2.23		3.30		
	C2 2 1 0 4 D 1					
	C2.2 LOAD I	RATING C	ALCULATI	ONS		
Section	C2.2 LOAD I	RATING C Rating Li	ALCULATI ive Load (M	ONS etric Tons)	33.0	
Section	C2.2 LOAD F	RATING C Rating Li Inve	ALCULATI ive Load (M ntory	ONS etric Tons) Operc	33.0 ating	
Section At	C2.2 LOAD I Description Moment	RATING C Rating Li Inve 1.34	ALCULATION ive Load (M ntory 44.2	ONS etric Tons) Operc 2.05	33.0 ating 67.8	
Section At Midspan	C2.2 LOAD F Description Moment Shear	RATING C Rating Li Inve 1.34 7.59	ALCULATION ive Load (M ntory 44.2 250.4	ONS etric Tons) Operc 2.05 10.14	33.0 ating 67.8 334.6	
Section At Midspan At Pior	C2.2 LOAD R Description Moment Shear Moment	RATING C Rating Li Inve 1.34 7.59 1.44	ALCULATIOn ive Load (M ntory 44.2 250.4 47.5	ONS etric Tons) Operc 2.05 10.14 2.40	33.0 ating 67.8 334.6 79.3	

Depend on the minimum value of Rating Factor > 1 or <1 , instruction in the below cell is automatically shown **Return to GENERAL**

Click following the above instruction

Return to GENERAL Load Posting

According to the Instruction shown in this screen, User have to click a gray coloured cell "Return to GENERAL" or "LOAD POSTING", then proceed directly to the next screen.

Note					
Reference	Refer to the manual calculation sheets as shown in the Appendix II "Load Rating Examples" page 274, 275 in the Manual for Load Rating of Bridges.				
Verification	Results of calculations should be verified.				
Input Data	Allowable compression stress, tensile stress and shear stress under inventory and operating should be given.				
Differences compared with Simple SIG	Load Rating calculations should be done not only at Midspan but also at Pier.				
Applied Equation	Rating Factor RF	$RF = (\Phi \times Rn - \gamma_{D} \times DL) / (\gamma_{LL} \times (LL + I))$			
in Output	Load Rating LR	LR = RF x 33.0 (Vehicle Weight)			

Sheet 6 (POSTLL) : Demand Forces and Stresses Calculations

D. LOAD POSTING BY LOAD FACTOR METHOD (LFM)

D1. DEMAND FORCES FOR LOAD POSTING VEHICLES

D1.2 POSTING VEHICLE DEMAND FORCES					
Conducting a Structural Analysis, the load demands for the SPG should be obtained separately and input the necessary load demands in the Table below.					
Posting Vehicle	Demand Forces	At Midspan	At Pier Support		
Type 1-1	Moment	657.5	-593.3		
	Shear	45.8	-109.1		
Turne 1.0	Moment	869.3	-784.7		
Type 1-2	Shear	65.0	-154.7		
Tupe 12.2	Moment	859.0	-775.2		
Type 12-2	Shear	64.1	-152.7		

D1.3 POSTING VEHICLE DEMAND STRESSES					
Posting Vehicle	Demand Forces	At Midspan	At Pier Support		
	Top Fiber	13.24	-10.00		
Type 1-1	Bottom Fiber	-41.88	31.00		
	Shear	5.95	14.18		
Туре 1-2	Top Fiber	17.50	-13.22		
	Bottom Fiber	-55.37	41.00		
	Shear	8.45	20.10		
Туре 12-2	Top Fiber	17.29	-13.06		
	Bottom Fiber	-54.71	40.51		
	Shear	8.33	19.84		

After confirmation of this sheet, click "NEXT" button then proceed directly to the next

Note						
Reference	Refer to the manual calculation sheets as shown in the Appendix II "Load Rating Examples" page 276 in the Manual for Load Rating of Bridges.					
Verification	Results of a	Results of calculations should be verified.				
Input Data	Unnecessary.					
Differences compared	Load Rating calculations should be done not only at Midspan but also at Pier					
with Simple SIG	Load demands should be separately analized with appropriate structural Mod					
Applied Equation	Strossos	Moment	$= M / Sx (= Y / Iz \times M)$			
in Output	21192262	Shear	= (Shear forces) / (Web Area)			

Sheet 7 (POSTLFM): Posting Rating Calculations

E1. LOAD POSTING RATING FACTOR CALCULATIONS (1)						
Destine Vehi	At Midspan At Pier Suppo					
Posting Vehicle		Inventory	Operating	Inventory	Operating	
	Top Fiber	4.49	8.13	7.38	12.21	
Type 1-1	Bottom Fiber	2.16	3.31	2.32	3.88	
	Shear	13.80	18.43	4.05	6.00	
	Top Fiber	3.39	6.15	5.58	9.23	
Type 1-2	Bottom Fiber	1.63	2.51	1.75	2.93	
	Shear	9.72	12.99	2.86	4.23	
	Top Fiber	3.43	6.23	5.65	9.34	
Type 12-2	Bottom Fiber	1.65	2.54	1.78	2.97	
	Shear	9.86	13.17	2.89	4.29	

E. LOAD POSTING RATING FACTOR CALCULATIONS

Vehicle		Inventory				Operating				
Vehicle Type	Weight (Metric	Mor	ment	Sh	ear	Mor	nent	She	ear	(Metric
.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Tons)	RF	LR	RF	LR	RF	LR	RF	LR	Tons)
(1) SEC	TION A									
MS18	33.0	1.34	44.2	7.59	250.4	2.05	67.8	10.14	334.6	33
Type 1-1	17.0	2.16	36.7	13.80	234.6	3.31	56.3	18.43	313.4	17
Type 1-2	27.0	1.63	44.1	9.72	262.5	2.51	67.7	12.99	350.7	27
Type 12-2	38.0	1.65	62.8	9.86	374.6	2.54	96.4	13.17	500.5	38
(2) SEC	TION B									
MS18	33.0	1.44	47.5	2.23	73.5	2.40	79.3	3.30	108.9	33
Type 1-1	17.0	2.32	39.4	4.05	68.9	3.88	65.9	6.00	102.0	17
Type 1-2	27.0	1.75	47.4	2.86	77.1	2.93	79.2	4.23	114.2	27
Type 12-2	38.0	1.78	67.5	2.89	110.0	2.97	112.8	4.29	162.9	38
									Load	Posting
									MS18	33T
									Type 1-1	17T
		(Type 1-2	27T
		lí –	10	ΔD					Type 12-2	38T

After confirmation of this sheet, click "END GO TO RC DECK SLAB" button then proceed directly to the next screen.

END AND GO TO DECK SLAB

Note					
Reference	Refer to the manual calculation sheets as shown in the Appendix II "Load Rating Examples" page 276, 277 in the Manual for Load Rating of Bridges.				
Verification	Results of calculations should be verified.				
Input Data	Unnecessary.				
Differences compared with Simple SIG	Load Rating calculations should be done not only at Midspan but also at Pier.				
Applied Equation	Rating Factor RF	$RF = (\Phi x Rn - \gamma_D x DL) / (\gamma_{LL} x (LL + I))$ a = (As' * fy) / (0.85 *f'c * beff)			
	Load Rating LR	LR = RF x (Vehicle Weight)			

6.6 RCDECK (Reinforced Concrete Deck Slab)

Sheet 1 (LAYOUT): Slab Layout and Rebar Schedule

	Note
Drawings	Drawings (Elevation and Cross Section) for the objective bridge should be
Didwings	prepared as shown in this screen.

Sheet 2 (DFDLLL) : Demand Forces Calculations

B. DEMAND FORCES

BO. INPUT				
	Weight of barrier rail Wbr =	4.2		
Assumption	Concrete Unit Weight Wu =	24.0		
	Asphalt Unit Weight Wa =	22.0		
	CONTINUOUS SALB			
	Slab thickness ts (m)	0.18		
	Asphalt overlay thickness tas (m	0.05		
	Slab span (Ls) (m)	1.90		
FOR	CANTILEVER SALB			
DEAD	Slab thickness ts (m)	0.15		
LOAD	Slab thickness of hunch ts' (m)	0.05		
	Asphalt overlay thickness tas (m	0.05		
	Slab span (Ls) (m)	1.0		
	Width of Asphalt (Las) (m)	0.6		
	Width of Curb (Lcu) (m)	0.4		
	LIVE LOAD			
FOR	Live Load (LL) (KN)	72.0		
LIVE	Impact (I)	0.3		
LOAD	Wheel load position from Curb(Lcu)(m)	0.3		
	Distributed over a length (E) (m)	1.383		

B1. DEAD LOAD CALCULATIONS				
Memort due to dead load (KN m/m)	Continuous Slab	1.96		
Moment due to dedd lodd (kin-hi/hi)	Cantilever Slab	5.56		

B2. LIVE LOAD CALCULATIONS		
Memort due to live load (KN m (m)	Continuous Slab	19.30
Moment due to live lodd (kin-m/m)	Cantilever Slab	20.30

After confirmation of this sheet, click "NEXT" button then proceed directly to the next	NEXT
---	------

Note				
Reference	Refer to th Rating Exa	Refer to the manual calculation sheets as shown in the Appendix II "Load Rating Examples" page 287, 288 in the Manual for Load Rating of Bridges.		
Input Data	Light blue the same of	ight blue cells should be filled up and these Input data should be given he same as the objective Girder's Load rating.		
	Dead	Continuous Slab	$= 1 / 10 \times W \times L_{s}^{2}$	
	Load	Cantilever Slab	= Σ (W x I)	
Applied Equation in Output		Continuous Slab	= (L _s + 0.61) / 9.74 x LL x (Uniform Continuity = 0.8) x (1 + 1)	
	Live Load	Cantilever Slab	= LL x x (1 + 1) / (E : Distribution Factor) where, E = 0.8 x (X) + 1.143 X : Wheel load distance from the curb	

Sheet 3 (CCLFM): Capacity Calculations for Moment

C. LOAD RATING BY LOAD FACTOR METHOD (LFM)

C1. CAPACITY CALCULATIONS

C1.1. INPUT				
	Conorata	Allowable Stress	fc	8.30
Material Properties	Conciere	Strength	f'c	20.7
(Mpa)	Pebar	Allowable Stress	fs	137.9
	Repar	Strength	fy	275.8
Rebar area per ma	ator strip	Diameter (mm)		16
	sier sinp	Spacing (mm)		125
∧s (mm)		Rebar area As (mm2)	1608.50
Nominal F		actor		0.9
Ultimate capacity	Paduation	due to Concrete Section Loss		1.0
factor (Uf)	factor	due to Rebar Section	Loss	1.0
	Applicable reduction factor			0.9
Slab thickness (mm)		Continuous slab (tscc	Continuous slab (tscon)	
sidd inickness (mm)		Cantilever slab (tscar	200	
Cover (mm) (c)				25
Rebar diameter (mm) (Φ)			16	
Concrete rectangular stress block (a) (mm)				25.21
Depth d (mm)		Continuous slab (dcon) (mm)		147.0
Depinia (mm)	Depth a (mm)		Cantilever slab (dcan) (mm)	

C1.2. CAPACITY CALCULATIONS
The Moment Ultimate Capacity
Continuous slab (Mucon) (KN-m, 53.70
Cantilever slab (Mucan) (KN-m/ 61.69

After confirmation of this sheet, click "NEXT" button then proceed directly to the next

Note				
Reference	Refer to the manual calculation sheets as shown in the Appendix II "Load Rating Examples" page 288, 289 in the Manual for Load Rating of Bridges.			
Verification	Results of calculations	Results of calculations should be verified.		
	Light blue cells should	be filled up, these are;		
	Rebar	Rebar Schedule (Diameter, Spacing and Cover)		
Input Data	Damaga Evaluation	Secton Losses of Concrete Section		
inpor Baia	Damage Lvaloalion	Secton Losses due to Rebar exposure caused by Moment		
	Material Properties	Should be given as same as the objective Girder's Load rating.		
Applied Equation	Moment Capacity M _{II}	$M_{U} = Uf x As' x fy x (d - a)$		
in Output	, , , ,	where, a = (As' x ty) / (0.85 x f'c x beff)		

Sheet 4 (LRLFM): Load Rating Calculations

C2. LOAD RATING CALCULATIONS

C2.1. INPUT		
Load factor for dead load	1.3	
Load factor for live load in Inventory Rating	2.17	
Load factor for live load in Operating Rating	1.3	
Moment Ultimate Capacity at Continuous Slab	53.70	
Dead Load Moment at Continuous Slab	1.96	
Live Load Moment at Continuous Slab		
Moment Ultimate Capacity at Cantilever Slab (KN-m/m)		
Dead Load Moment at Cantilever Slab		
Live Load Moment at Cantilever Slab		
Rating Live Load	33.0	

C2.2. CALCULATIONS OF RATING FACTOR AND LOAD RATING			Rating Factor	Load Rating (tons)
Dation Frister	Continuous Slab	Inventory Rating	1.22	40.32
Rating Factor		Operating Rating	2.04	67.30
Load Pating		Inventory Rating	1.24	40.79
Loga Kaling		Operating Rating	2.06	68.09

Depend on the minimum value of Rating Factor > 1 or <1 , instruction in the below cell is automatically shown **Return to LAYOUT**

Click following the above instruction

Return to LAYOUT

Load Posting

According to the Instruction shown in this screen, User have to click a gray coloured cell "Return to GENERAL" or "LOAD POSTING", then proceed directly to the next screen.

Note			
Reference	Refer to the manual calculation sheets as shown in the Appendix II "Load Rating Examples" page 289, 290 in the Manual for Load Rating of Bridges.		
Verification	Results of calculations should be verified.		
Input Data	Unnecessary.		

Sheet 5 (LRLFM): Load Posting Calculations by LFM

D. LOAD POSTING BY LOAD FACTOR METHOD

D1. DEMAND FORCES FOR LOAD POSTING VEHICLES

Description			Posting Vehicles		
Description		Type	Wheel Load	Forces	
	Continuous Slab	Type 1-1	66.8	17.90	
Moment due to Live load (KN-m/m)		Type 1-2	73.9	19.81	
		Type 12-2	65.9	17.66	
	Cantilever Slab	Type 1-1	66.8	18.84	
		Type 1-2	73.9	20.84	
		Type 12-2	65.9	18.58	

D2. POSTING RATING FACTOR CALCULATIONS

D2	.1. POSTING RATING FACTOR CALCULAT	IONS	
Load factor for dead	lload		1.3
Load factor for live lo	oad in Inventory Rating		2.17
Load factor for live lo	oad in Operating Rating		1.3
	Moment Ultimate Capacity at Continuous Slo	dr	53.70
	Dead Load Moment at Continuous Slab	1.96	
AI Continuous Slab	Live Load Moment at Continuous Slab	Type 1-1	17.90
Commodos sido		Type 1-2	19.81
		Type 12-2	17.66
	Moment Ultimate Capacity at Cantilever Sla	61.69	
	Dead Load Moment at Cantilever Slab	5.56	
At Captilover Slab		Type 1-1	18.84
Cominevel sido	Live Load Moment at Cantilever Slab	Type 1-2	20.84
		Type 12-2	18.58
Rating Live Load			33.0

D2	D2.2. RATING FACTOR AND LOAD RATING CALCULATIONS				Load Rating (tons)
		Turne 1 1	Inventory Rating	1.32	43.45
		Type 1-1	Operating Rating	2.20	72.54
	Continuous	T	Inventory Rating	1.19	39.28
Rating Factor and	Slab	Type 1-2	Operating Rating	1.99	65.57
		Tupe 12.2	Inventory Rating	1.33	44.05
		Type 12-2	Operating Rating	2.23	73.53
		Туре 1-1	Inventory Rating	1.25	41.30
Load Kalling			Operating Rating	2.09	68.94
	Cantilever		Inventory Rating	1.13	37.33
	Slab		Operating Rating	1.89	62.31
		Tupo 12.2	Inventory Rating	1.27	41.86
		Type 12-2	Operating Rating	2.12	69.88

After confirmation of this sheet, click "NEXT" button then proceed directly to the next NEXT

٦

Note				
Reference	Refer to the manual c Rating Examples" pag	efer to the manual calculation sheets as shown in the Appendix II "Load ating Examples" page 290, 291 in the Manual for Load Rating of Bridges.		
Verification	Results of calculations	Results of calculations should be verified.		
Input Data	Unnecessary.			
Applied Equation	Rating Factor $RF = (R - A1 \times D) / (A2 \times L(1 + I))$			
in Output	Load Rating	LR = RF x (Each Posting Vehicle Wejght)		
E. SUMMARY OF LOAD POSTING

		Inventory		Operating		Posting	
		RF	LR	RF	LR	(Metric Tons)	
(1) CONTINUOUS SLAB							
MS18	33.0	1.22	40.3	2.04	67.3	33	
Type 1-1	17.0	1.32	22.4	2.20	37.4	17	
Type 1-2	27.0	1.19	32.1	1.99	53.6	27	
Type 12-2	38.0	1.33	50.7	2.23	84.7	38	
(2) CANTILEVER SLAB							
MS18	33.0	1.24	40.8	2.06	68.1	33	
Type 1-1	17.0	1.25	21.3	2.09	35.5	17	
Type 1-2	27.0	1.13	30.5	1.89	51.0	27	
Type 12-2	38.0	1.27	48.2	2.12	80.5	38	
					LOAD POSTING		
					M\$18	33T	
					Type 1-1	17T	

After confirmation of this sheet, click "BACK TO LAYOUT" button then proceed directly to the next screen.

27T

38T

BACK TO LAYOUT

Type 1-2 Type 12-2

Note				
Reference	Refer to the manual calculation sheets as shown in the Appendix II "Load Rating Examples" page 291 in the Manual for Load Rating of Bridges.			
Verification	Results of calculations should be verified.			
Input Data	Unnecessary.			